• Title/Summary/Keyword: sulfate ion

Search Result 605, Processing Time 0.03 seconds

MnZn Ferrite Preparation by Coprecipitation Method (공침법에 의한 MnZn Ferrite 분말제조 연구)

  • 엄태형;고성만;서동수;양준환;박균하
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.6
    • /
    • pp.478-484
    • /
    • 1993
  • The influence of reaction conditions on the MnZn ferrite coprecipitation process were investigated using mixed metla sulfate solution and ammonium oxalate. In order to minimize the metallic ion losses and to control the particle size, the optimum reaction conditions were as follows; reaction temperature $25^{\circ}C$, metal sulfate concentration 0.3M, molar ratio of ammonium oxalate/mixed metal sulfate 1.1:1. The production yield was as high as 97.6% of theoretical yield at optimum reaction condition.

  • PDF

Removal Characteristics of Phosphorus at Synthetic Variation of Zirconium Mesoporous Structure (지르코늄 메조기공 구조체의 합성조건 변화에 따른 인 제거 특성)

  • Lee, Sang-hyup;Lee, Byoung-cheun;Lee, Kwan-yong;Choi, Yong-su;Park, Ki-young
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.637-642
    • /
    • 2005
  • The focus of this study was to examine the phosphorus removal characteristic by zirconium mesoporous structured material synthesized on various conditions. The zirconium sulfate-surfactant mesoporous structured material(ZS) was synthesized by hydro-thermal synthesis. The material has regular hexagonal array of surfactant micelles and sulfate ion ($HSO_4{^-}$). We confirmed that sulfate ion in zirconium mesoporous structured material can be ion-exchanged with phosphate ion ($H_2PO_4{^-}$) in phosphoric acid solution. On the X-ray diffraction (XRD) pattern of ZS, three peaks which shows the important characteristics of hexagonal crystal lattice were observed at (100), (110) and (200). The transmission electron micrograph (TEM) show high crystallization with pore size about $47{\AA}$. The maximum adsorption capacity of ZS was as great as 3.2 mmol-P/g-ZS. From the adsorption isotherm, correlation coefficients were higher for the Langmuir isotherm than the Freundlich isotherm. With the respect of chain length of surfactant, the adsorption capacity for phosphate synthesized with C12 was higher than C16 and C18. The highest amount of adsorbed phosphate on ZS was observed at the surfactant-to-zirconium molar ratio of 0.5 to 1.

Purification and Properties of $\alpha$-Glucosidase from Mococcus halophilus (Pediococcus halophilus로부터 생성한 $\alpha$-Glucosidase의 정제 및 특성)

  • 민해기;이호근;문지웅;강국희
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.2
    • /
    • pp.143-149
    • /
    • 1992
  • A bacterial strain No. 2, which highly produced a-glucosidase, was isolated from Kimchi and identified to be a similar species of Pediococcus halophilus. This enzyme was purified by protamine sulfate, ammonium sulfate fractionation, ion exchange and gel filtration. The maximal a-glucosidase activity was observed at pH 6.0 and this enzyme was stable at pH 6.0~ 7.5. The optimum temperature of this enzyme activity was $37^{\circ}C$, but enzyme activity was gradually lost above $37^{\circ}C$. This enzyme was activated by 10 mM MgCh and inhibited by 10 mM mercaptoethanol. The kinetics of PNPG(p-Nitrophenyl-a-D-glucopyranoside) and maltose were Kp0.52 mM/27.5 pg protein, $V_{max}$= 0.021 mM/min 27.5 ${\mu}g$ protein and $K_m$= 0.32 mMD7.5 ${\mu}g$ protein, $V_{max}$= 0.025 mM/min 27.5 ${\mu}g$ protein, respectively. The molecular weight of $\alpha$-glucosidase was about 37, 000.

  • PDF

Removal of sulfate ion from semiconductor wastewater by ettringite precipitation

  • Chung, Chong-Min
    • Membrane and Water Treatment
    • /
    • v.13 no.4
    • /
    • pp.183-189
    • /
    • 2022
  • This study seeks towards an optimal way to control sulfate ions in semiconductor wastewater effluent with potential eco-toxicity. We developed a system based on ettringite (Ca6Al2(SO4)3(OH)12·26H2O). The basic idea is that the pH of the water is raised to approximately 12 with Ca(OH)2. After, aluminium salt is added, leading to the precipitation of ettringite. Lab-scale batch and continuous experiment results with real semiconductor wastewater demonstrated that 1.5 and 1 of stoichiometric quantities for Ca2+ and A3+ with pH above 12.7 could be considered as the optimal operation condition with 15% of sludge recycle to the influent. A mixed AlCl3 + Fe reagent was selected as the beneficial Al3+ source in ettringite process, which resulted in 80% of sludge volume reduction and improved sludge dewaterability. The results of continuous experiment showed that with precipitation as ettringite, sulfate concentration can be stably reduced to less than 50 mg/L in effluent from the influent 2,050 ± 175 mg/L on average (1,705 ~ 2,633 mg/L).

A Comparative Study of Sulfate and Chloride Intrusion in Mortar Sections: An Approach Using Laser Induced Breakdown Spectroscopy and Ion Exchange Membrane (LIBS와 이온교환막을 활용한 모르타르 단면 침투 황산염과 염화물 분석)

  • Park, Won-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.221-229
    • /
    • 2023
  • This research aimed to conduct an empirical assessment of the penetration of chloride and sulfate ions into mortar sections using an anion exchange membrane(AEM) and laser-induced breakdown spectroscopy(LIBS). The study involved a simultaneous ion chromatography(IC) analysis and LIBS analysis performed on mortars immersed in varying concentrations of chloride and sulfate. The findings revealed that at the wavelengths specific to Chloride(837.59nm) and Sulfur(921.30nm), the LIBS intensity achieved using AEM surpassed that obtained with a paper substrate at equivalent penetration concentrations. A robust correlation was confirmed between LIBS intensity and chloride ion concentration. Furthermore, when juxtaposed with IC analysis concentration outcomes at identical depths, the AEM displayed a higher intensity. The research noted an enhancement in LIBS intensity and a diminution in errors within the low-concentration section when deploying AEM. However, for the Sulfur wavelength of 921.3nm, there remains a need to augment the sensitivity of the LIBS signal within the low-concentration section in future studies. The findings underscore the potential of employing AEM and LIBS for precise analysis of chloride and sulfate ion penetration into mortar sections. This strategy can aid in bolstering assessment precision and mitigating errors, particularly in regions with low concentrations. It is recommended to further research and develop methods to amplify the sensitivity of the LIBS signal for sulfur detection in low-concentration sections. In sum, the study accentuates the significance of employing advanced techniques like AEM and LIBS for efficacious and precise analysis in the domain of mortar section assessment.

${SO_4}^{2-}$ ion Removal from Solution by Crystal Precipitation on Surface Active Glasses (표면활성유리에의 결정석출을 이용한 용액중 황산염 이온 제거)

  • 남명식;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1286-1293
    • /
    • 1998
  • ${SO_4}^{2-}$ ions present in industrial waste water if combined with other metal ions in the water can cause serious scale problem in a transporting pipe. In this study therefore ${SO_4}^{2-}$ ions in an acidic solution have been removed by using surface active glasses. Glasses with various compositions of $SiO_2-Na_2O-B_2O_3-RO$ (R=Mg, Ca, Sr, Ba) system were reacted in a ${SO_4}^{2-}$ ion-containing solution with various pHs ranging from 1 to 4 for various time the reacted glass surfaces were analyzed by XRD and SEM and all ions in the reacted solution were also measured ${SO_4}^{2-}$ ions in the solution were combined with divalent ions leached out of glass and precipitated on the glass surface as sulfate crystals. In this was the surface ion could be removed from the acidic solution. The sulfate ion removal capacity is closely related to the solubility product con-stants of the newly formed sulfate crystals. Almost no sulfate crystal was formed on the MgO-containing glass while sulfate crystals were easily formed on the glass containing either SrO or BaO This indicates that those glasses have strong removal efficiency of ${SO_4}^{2-}$ ions from the solution.

  • PDF

Quantification of sulfur from organic and inorganic materials for determination of 35C (35C 측정을 위한 유기물과 무기물에서 황의 정량)

  • Lee, H.N.;Kang, S.H.;Song, B.C.;Sohn, S.C.;Jee, K.Y.
    • Analytical Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.186-190
    • /
    • 2009
  • The oxidation studies of a sulfur to a sulfate ion by various oxyhalide oxidants in organic (thiourea, methionine) and inorganic (sulfate, thiophosphate) compounds were carried out in an acidic solution. The optimized result of the oxidation reaction was obtained when a bromate compound (${BrO_3}^-$) as an oxidant and a 3 M $HNO_3$ solvent were used. The chemical yield for the oxidation of the organic and inorganic sulfur compounds to a sulfate ion was monitored as 80% for thiophosphate, 87% for methionine, and 100% for thiourea and sulfate within 5% RSD. The oxidations of thiourea required at least 1.6 equivalents of the bromate in an acidic solution. In the case of the oxidation of methionine and thiophosphate, the oxidation yields were above 80% if the bromate was used at 20 times higher than that of the substrates. The sulfate ion was quantitatively measured by using a GPC counting of $^{35}S$ followed by precipitates of $BaSO_4$. A quenching correction curve for the $^{35}S$ counting was obtained to use the difference via the precipitate weight result.

Removal of Cobalt Ions by Precipitate Foam Flotation (침전 포말부선법에 의한 Cobalt Ion의 제거)

  • 정인하;이정원
    • Resources Recycling
    • /
    • v.7 no.3
    • /
    • pp.11-16
    • /
    • 1998
  • Simulated waste liquid containing 50 ppm cobalt ion was t$\xi$sted by precipitate flotation using a sodium lauryl sulfate as a c collector. The effects of initial cobalt ion concentration, pH, surfactant concentration, flotation time, gas flow rate and foreign i ions on removal efficiency of cobalt ion were studied. Pretreatment of the waste liquid with 35% $H_2O_2$, prior to precipitate f flotation made shin of optimal flotation pH from the strong alkalinity to weak alkaline range and made a favorable flotation of c cobalt ion in wide range of pH. For the result of this experiment, 99.8% removal efficiency was obtained on the conditions of initial coball ion concentration 50 ppm, pH 9.5 gas flow rate 70 mllmin, flotation time 30 min. The simulate ion was fanned t to be the most harmful ion against removal of cobalt by precipitate flotation of the species which were tested The presence of 0.1 M of $SO_4^{2-}$ ion decreased remo,때 $\xi$폐iciency of cobalt to 90% while the cobalt were almost entirely removed in the a absence of sulfate ion.

  • PDF

Size Distribution Characteristics of Particulate Mass and Ion Components at Gosan, Korea from 2002 to 2003

  • Han J.S.;Moon K.J.;Lee S.J.;Kim J.E.;Kim Y.J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.E1
    • /
    • pp.23-35
    • /
    • 2005
  • Size distribution of particulate water-soluble ion components was measured at Gosan, Korea using a micro-orifice uniform deposit impactor (MOUDI). Sulfate, ammonium, and nitrate showed peaks in three size ranges; Sulfate and ammonium were of dominant species measured in the fine mode ($D_{p} < 1.8 {\mu}m$). One peak was observed in the condensation mode ($0.218\sim0.532{\mu}m$), and the other peak was obtained in the droplet mode ($0.532\sim1.8{\mu}m$). Considering the fact that the equivalent ratios of ammonium to sulfate ranged from 0.5 to 1.0 in these size ranges, it is inferred that they formed sufficiently neutralized compounds such as ($NH_{4})_{2}SO_{4} and (NH_{4})_{3}H(SO_{4})_{2}$ during the long-range transport of anthropogenic pollutants. On the other hand, nitrate was distributed mainly in the coarse mode ($3.1\sim6.2{\mu}m$) combined with soil and sea salt. Two sets of MOUDI samples were collected in each season. One sample was collected when the concentrations of criteria air pollutants were relatively high, but the other represented relatively clean air quality. The concentrations of sulfate and ammonium particles in droplet mode were the highest in winter and the lowest in summer. When the air quality was bad, the increase of nitrate was observed in the condensation mode ($0.218\sim0.282{\mu}m$). It thus suggests that the nitrate particles were produced through gas phase reaction of nitric acid with ammonia. Chloride depletion was remarkably high in summer due to the high temperature and relative humidity.

Thermochemical Sulfate Reduction Simulation Experiments on the Formation and Distribution of Organic Sulfur Compounds in the Tuha Crude Oil

  • Yue, Changtao;Li, Shuyuan;Song, He
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2057-2064
    • /
    • 2014
  • Thermochemical sulfate reduction (TSR) was conducted in autoclave on the system of crude oil and $MgSO_4$ at different temperatures. Gas chromatography pulsed flame photometric detector (GC-PFPD) was used to detected the composition of organic sulfur compounds in oil phase products. The results of the analysis indicate that with increased temperature, the contents of organic sulfur compounds with high molecular weight and thermal stability, such as benzothiophenes and dibenzothiophenes, gradually became dominated. In order to gain greater insight into the formation and distribution of organic sulphur compounds from TSR, positive ion electrospray Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used in detecting the detailed elemental composition and distribution of them. The mass spectra showed that the mass range of sulfur compounds was 200-550 Da. Four sulfur class species, $S_1$, $N_1S_1$, $O_1S_1$ and $O_2S_1$, were assigned in the positive-ion spectrum. Among the identified sulfur compounds, the $S_1$ class species was dominant. The most abundant $S_1$ class species increase associated with the DBE value and carbon number increasing which also indicates the evolution of organic sulfur compounds in TSR is from the labile series to the stable one. In pure blank pyrolysis experiments with crude oil cracking without TSR, different composition and distribution of organic sulfur compounds in oil phase products were seen from mass spectra in order to evaluate their pyrolysis behaviors without $MgSO_4$. FT-IR and XRD were used in analyzing the products of solid phases. Two distinct crystallographic phases MgO and $MgSO_4$ are found to coexist in the products which demonstrated the transformation of inorganic sulfur compounds into organosulfur compounds exist in TSR.