DOI QR코드

DOI QR Code

35C 측정을 위한 유기물과 무기물에서 황의 정량

Quantification of sulfur from organic and inorganic materials for determination of 35C

  • Lee, H.N. (Korea Atomic Energy Research Institute) ;
  • Kang, S.H. (Korea Atomic Energy Research Institute) ;
  • Song, B.C. (Korea Atomic Energy Research Institute) ;
  • Sohn, S.C. (Korea Atomic Energy Research Institute) ;
  • Jee, K.Y. (Korea Atomic Energy Research Institute)
  • 투고 : 2008.10.22
  • 심사 : 2009.02.11
  • 발행 : 2009.04.25

초록

산 매질 조건에서 다양한 할로겐산화물을 이용하여 황 원소를 포함한 유기물(thiourea, methionine)과 무기물(sulfate, thiophosphate)의 산화에 관한 연구를 수행하였다. 산화반응의 최적조건은 3 M 질산용액 매질에서 bromate (${BrO_3}^-$)를 산화제로 사용했을 때 얻어졌다. 유기 황 화합물인 thiourea에서는 100%의 산화 수율을 확인하였으며, methionine을 사용한 결과는 87%이었다. 또한 무기 황 화합물인 thiophosphate와 sulfate의 산화는 각각 80%와 100%의 산화 수율을 얻었으며, 5%의 상대표준표차(RSD)가 있음을 확인하였다. Thiourea의 산화는 1.6배의 bromate가 필요하였으며, methionine과 thiophosphate의 경우에는 20배 이상이 필요함을 관찰하였다. 황산염 이온은 황산 바륨($BaSO_4$)으로 침전을 확보하였으며, 이때 얻어진 방사성 황산 바륨($Ba^{35}SO_4$)은 기체비례계수기(gas proportional counter, GPC)을 이용하여 정량적으로 측정하였다. $^{35}S$ 계측을 위한 소광보정곡선은 무게 차이를 이용하여 작성되었다.

The oxidation studies of a sulfur to a sulfate ion by various oxyhalide oxidants in organic (thiourea, methionine) and inorganic (sulfate, thiophosphate) compounds were carried out in an acidic solution. The optimized result of the oxidation reaction was obtained when a bromate compound (${BrO_3}^-$) as an oxidant and a 3 M $HNO_3$ solvent were used. The chemical yield for the oxidation of the organic and inorganic sulfur compounds to a sulfate ion was monitored as 80% for thiophosphate, 87% for methionine, and 100% for thiourea and sulfate within 5% RSD. The oxidations of thiourea required at least 1.6 equivalents of the bromate in an acidic solution. In the case of the oxidation of methionine and thiophosphate, the oxidation yields were above 80% if the bromate was used at 20 times higher than that of the substrates. The sulfate ion was quantitatively measured by using a GPC counting of $^{35}S$ followed by precipitates of $BaSO_4$. A quenching correction curve for the $^{35}S$ counting was obtained to use the difference via the precipitate weight result.

키워드

참고문헌

  1. P. E. Koehler, Phys. Rev. C: Nuclear Physics, 44, 1675 (1991) https://doi.org/10.1103/PhysRevC.44.1675
  2. N. Jayachandran, K. P. Asokan and V. K. P. Unny, J. Label. Compd. Radiopharm., 43, 971(2000) https://doi.org/10.1002/1099-1344(200009)43:10<971::AID-JLCR380>3.0.CO;2-Q
  3. D. B. Cowie, E. T. Bolton and M. K. Sands, Arc. Biochem. Biophys., 35, 140(1952) https://doi.org/10.1016/S0003-9861(52)80058-X
  4. B. S. Askins, A. B. Brill and G. U. V. Rao, Radiology, 130, 103(1979) https://doi.org/10.1148/130.1.103
  5. D. R. Doerge, J. Label. Compd. Radiopharm., 25, 985 (1988) https://doi.org/10.1002/jlcr.2580250910
  6. E. Livni, M. A. Davis and V. D. Warner, J. Med. Chem., 22, 580(1979) https://doi.org/10.1021/jm00191a024
  7. V. Vititsky, M. Thomas, A. Ghorpade, H. E. Gendelman, and R. Banerjee, J. Biol. Chem., 47, 35785(2006)
  8. X. Yang and K. B. Grant, J. Biochem. Biophys. Methods, 50, 123(2002) https://doi.org/10.1016/S0165-022X(01)00179-8
  9. P. Vercier and A. Raggenbass, Int. J. App. Radiat. Isot., 5, 213(1959) https://doi.org/10.1016/0020-708X(59)90233-9
  10. M. F. Barakat and A. H. Zahran, Int. J. App. Radiat. Isot., 20, 109(1969) https://doi.org/10.1016/0020-708X(69)90147-1
  11. M. Yamamoto, A. Sakaguchi, M. Funatsu, H. Kofuji and H. Tokuyama, J. Radioanal. Nucl. Chem., 268, 569 (2006) https://doi.org/10.1007/s10967-006-0208-4
  12. Y.-L. Hong and G. Kim, Anal. Chem., 77, 3390(2005) https://doi.org/10.1021/ac048128c
  13. H. N. Lee, S.-H. Kang, H. J. Ahn, S. H. Han and K. Y. Jee, Proc. Korean Nucl. Soc. Autumn Meeting, 2006