• Title/Summary/Keyword: sugar utilization

Search Result 212, Processing Time 0.03 seconds

A Study of Bio-Energy Production using Suspended Wood Waste from Dam (댐목질계부유물을 이용한 바이오에너지 생산 가능성 연구)

  • Cho, Jung-Sik;Shin, Soo-Jeong;Cho, Byung-Yeol;Lee, Byung-Chan;Lee, Jun-Ho;Yeon, Ik-Jun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.188.2-188.2
    • /
    • 2011
  • The use of renewable energy sources is becoming increasingly necessary to minimize the problems derived from the global warming impacts caused by the utilization of fossil fuels as well as their limited supply and reservoir. Also, localized heavy rain has occurred in many areas. As a result, suspended wood waste is being inflow into the dam and the problem of waste disposal has occurred. It is a unique renewable and alternative source for the production of energy. The experiment using wood waste (dry weight 25.0g) was conducted for extraction sugars such as xylose, lactose and glucose. For the sugar extraction from wood waste, hydrolysis experiment using wood waste was conducted by two steps. First step was reacted with 72% sulfuric acid (24.0N and 37.5 ml) for 1hr at $30^{\circ}C$ and second step was reacted at $105^{\circ}C$ for one hour after adding 2.45times of hot water. Extracted sugar was used in the experiment of sugar consumption to estimate feasibility of ethanol production using yeast(P. Stipitis and S cerevisiae). As a result, sugar extracted from wood waste was effective consumed by yeast(P. Stipitis and S cerevisiae). The consumption rate by yeast was S. cerevisiae was faster than that of P. stipitis. It can be confirmed that resource as ethanol production using wood waste was available.

  • PDF

Physicochemical properties of kombucha with fruit peels during fermentation (과일 껍질을 첨가한 콤부차의 발효 중 이화학적 특성)

  • Tae Yeon Lee;Young Hyoun Yi
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.321-333
    • /
    • 2023
  • The study investigated the pH, acidity, soluble solids, total sugar, polyphenol, flavonoid, anthocyanin content, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, and color of kombucha with a variety of added fruit peels during the fermentation process. Pear, grape, plum, orange, apple, and golden kiwi peels were added during fermentation. The pH showed a decrease, while an increase in acidity was observed. An increase in soluble solids, which was higher in most experimental groups than the control group, was also observed. A decrease in total sugar was observed over time. However, an increase was observed in reducing sugar. On Day 0, higher total sugar and reducing sugar were detected in the peel addition group compared with the control group. The antioxidant capacity of polyphenol, flavonoid, anthocyanins, and DPPH radicals scavenging increased with fermentation and was higher in all addition groups, except for pear, compared with the control group. Except for grapes and plums containing high levels of anthocyanins, an increase in the L-value was observed over time, and an increase in the a-value of grapes and plums was also observed (p<0.05). The possible utilization of inedible fruit peel in kombucha was shown. Applying inedible fruit peels to kombucha is proposed to increase antioxidant content and modulate color and pH.

Utilization of Ligno-cellulosic Biomass(II) - Saccharification of Exploded Wood by Acid Hydrolysis - (목질계(木質系) Biomass의 이용(II) - 폭쇄재(爆碎材)의 산가수분해(酸加水分解)에 의한 당화(糖化))

  • Yang, Jae-Kyung;Lee, Jong-Yoon;Chang, Jun-Pok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.1-7
    • /
    • 1989
  • This study was performed to obtain the optimal condition that hydrolyzed exploded pine(Pinus densiflora), oak(Quercus serrata) and birch wood(Betula platyphylla var. japonica) by using sulfuric acid. The results obtained were summarized as follows: In hydrolysis of wood meal with sulfuric acid. maximum yield of sugar appeared that pine was 12 hours. oak and birch were 24 hours with 65% sulfuric acid. Futhermore, when wood meal and exploded woods were hydrolyzed with 65% sulfuric acid at $23^{\circ}C$ for 6 hours(primary hydrolysis), diluted to 3% and hydrolyzed again at $100^{\circ}C$ for 2 hours(secondary hydrolysis), the maximum sugar yield of wood meals were 6 hours. those of higher steam exploded pine wood was 3 hours. of lower steam exploded oak and birch woods were 6 hours. The sugar analyses of exploded wood showed that the amount of arabinose and xylose residue rapidly decreased. content of nemicelluose decreased with increase of steaming time and pressure.

  • PDF

Manufacturing and Characterization evaluation of mulberry concentrate for food additive (식품첨가제용 뽕잎 농축액의 제조 및 특성평가)

  • Kim, Hyun-Bok;Seok, Young-Seek
    • Journal of Sericultural and Entomological Science
    • /
    • v.51 no.2
    • /
    • pp.180-184
    • /
    • 2013
  • Study on extraction and concentration of mulberry leaf were performed to increase utilization as new source of food additives. We analyzed extraction method in EtOH, sugar and hot water solution. The desirable method was 70% alcoholic extraction. Color of concentrate was comparatively stable in 70% alcoholic extraction solution and sugar solution. But hot water extraction was showed color change with brown. By filtering of concentrate in 70% alcoholic extraction and sugar extraction, we removed a deposits. Also, we investigated characteristics of the concentrate from mulberry leaf.

Hydrogen Fermentation of the Galactose-Glucose Mixture (갈락토스-글루코스 혼합당 수소 발효)

  • Cheon, Hyo-Chang;Kim, Sang-Youn
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.397-403
    • /
    • 2012
  • Galactose, an isomer of glucose with an opposite hydroxyl group at the 4-carbon, is a major fermentable sugar in various promising feedstock for hydrogen production including red algal biomass. In this study, hydrogen production characteristics of galactose-glucose mixture were investigated using batch fermentation experiments with heat-treated digester sludge as inoclua. Galactose showed a hydogen yield compatible with glucose. However, more complicated metabolic steps for galactose utilization caused a slower hydrogen production rate. The existence of glucose aggravated the hydrogen production rate, which would result from the regulation of galactose-utilizing enzymes by glucose. Hydrogen produciton rate at galactose to glucose ratio of 8:2 or 6:4 was 67% of the production rate for galactose and 33% for glucose, which could need approximately 1.5 and 3 times longer hydraulic retention time than galacgtose only condition and glucose only condition, respectively, in continuous fermentation. Hydrogen production rate, Hydrogen yield, and organic acid production at galactose to glucose ratio of 8:2 or 6:4 were 0.14 mL H2/mL/hr, 0.78 mol $H_2$/mol sugar, and 11.89 g COD/L, respectively. Galactose-rich biomass could be usable for hydogen fermenation, however, the fermentation time should be allowed enough.

Evaluation on the utilization possibility of waste mushroom logs as biomass resource for bioethanol production (바이오에탄올 생산을 위한 바이오매스 자원으로서 버섯골목의 이용 가능성 평가)

  • Lee, Jae-Won;Koo, Bon-Wook;Choi, Joon-Weon;Choi, Don-Ha;Choi, In-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.485-488
    • /
    • 2006
  • In order to investigate the possibility of waste mushroom logs as biomass resource chemical and physical characteristics of normal woods and waste mushroom logs such as crystallinity value, energy consumption, total sugar yield after hydrolysis chemical compounds and molecular weight distribution after acid hydrolysis, were examined. In the results, crystallinity of waste mushroom logs which were three year passed after the inoculation was decreased drastically from 49% to 33% during the cultivation. Lignin contents as chemical compounds of normal woods and waste mushroom logs were 21.07% and 18.78%, respectively. By the results of measurement of energy consumption, the size reduction of normal woods required a significantly higher energy than that of waste mushroom logs. In the hydrolysis, total sugar yield by enzyme and acid hydrolysis were high in waste mushroom logs(53% 57.5%) than in normal woods(42.9%, 47.17%). According to the molecular weight distribution using GPC, low molecular weight compounds were distributed in waste mushroom logs. Based on these results, waste mushroom logs have enough potential as material for developing alternative energy because of easily conversion to sugar by various hydrolysis methods and requirement of low energy consumption during size reduction.

  • PDF

Fermentation of Glucose, Xylose and Cellobiose by Pichia stipitis (Pichia stipitis에 의한 Glucose, Xylose 및 Cellobiose의 발효)

  • 이유석;권윤중;변유량
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.1
    • /
    • pp.91-95
    • /
    • 1992
  • The hydrolyzates of lignocellulosic biomass contain a mixture of glucose, xylose and cellobiose. The yeast which can produce ethanol efficiently from xylose and cellobiose was selected and its growth and ethanol formation behavior on each sugar and their mixture were investigated. Ethanol yields during batch culture of Pichia stipitis CBS 5776 were 0.4. 0.36 and 0.23 g/g substrate on glucose, xylose and cellobiose, respectively. Mixed sugar fermentation data indicate that glucose causes catabolite regulation on xylose and cellobiose utilization. However, xylose and cellobiose were utilized simultaneously. Ethanol yields on mixtures of sugars were generally additive for each of the substrates.

  • PDF

Isolation and Characterization of Actinomycetes Producing Extracellular Adenosine Deaminase Inhibitor (세포외 Adenosine Deaminase Inhibitor를 생산하는 방선균의 분리 및 특성)

  • Kim, Kyoung-Ja;Park, Kui-Lea
    • YAKHAK HOEJI
    • /
    • v.38 no.3
    • /
    • pp.274-280
    • /
    • 1994
  • A strain of actinomycetes producing extracellular adenosine deaminase inhibitor, strain V-8, was isolated from soil. Strain V-8 was gam positive and its cell wall chemotype was decided as cell wall chemotype I from analysis of diaminopimelic acid isomers and sugar pattern. This strain had a wide range of sugar utilization as carbon sources. The optimal pH and temperature for growth were $6.8{\sim}7.0$ and $28{\sim}30^{\circ}C$, respectively. From the morphological, chemotaxonomical characteristics and analysis of various physiological characteristics, the strain V-8 was identified Streptomyces sp.

  • PDF

Metabolic Engineering for Improved Fermentation of L-Arabinose

  • Ye, Suji;Kim, Jeong-won;Kim, Soo Rin
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.339-346
    • /
    • 2019
  • L-Arabinose, a five carbon sugar, has not been considered as an important bioresource because most studies have focused on D-xylose, another type of five-carbon sugar that is prevalent as a monomeric structure of hemicellulose. In fact, L-arabinose is also an important monomer of hemicellulose, but its content is much more significant in pectin (3-22%, g/g pectin), which is considered an alternative biomass due to its low lignin content and mass production as juice-processing waste. This review presents native and engineered microorganisms that can ferment L-arabinose. Saccharomyces cerevisiae is highlighted as the most preferred engineering host for expressing a heterologous arabinose pathway for producing ethanol. Because metabolic engineering efforts have been limited so far, with this review as momentum, more attention to research is needed on the fermentation of L-arabinose as well as the utilization of pectin-rich biomass.

Studies on the Ethanol Production by Clostridium thermosaccharolyticum (Clostridium thermosaccharolyticum에 의한 에탄올생산에 관한 연구)

  • 조은경;이윤광;변유량;유주현
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.4
    • /
    • pp.397-402
    • /
    • 1985
  • The fermentation of various sugars by C. thermosaccharolyticum was examined under pH controlled, anaerobic condition. The kinetic model for Product formation at various sugars was the combination of growth and non-growth associated mode. In the utilization of a single sugar, glucose was the best carbon source for growth. The specific growth rate of glucose, xylose and cellobiose were 0.363 h$^{-1}$, 0.242 h$^{-1}$ and 0.144 h$^{-1}$ respectively. The production of ethanol from glucose showed a negatively growth associated mode, so the higher growth rate decreased the productivity of ethanol. The maximum concentrations of the produced ethanol were 2.42 g/l, 3.76 g/l, and 3.4 g/l on glucose, xylose, and cellobiose. No glucose was detected during cellobiose fermentation. Sequential utilization of sugars was observed in the mixtures of glucose, xylose and cellobiose. It preferred glucose, followed by xylose and then cellobiose. The presence of other sugars had little or no effect on the rate of another sugar utilization. Cell lysis at the end of fermentation occured more slowly in the mixtures of sugars than a single sugar.

  • PDF