• Title/Summary/Keyword: sugar production

Search Result 972, Processing Time 0.027 seconds

Feeding of Whole Sugar Cane to Dairy Cattle during the Dry Season

  • Suksombat, W.;Mernkrathoke, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.3
    • /
    • pp.345-349
    • /
    • 2005
  • A study was conducted to determine the effect of feeding chopped whole sugar cane compared to corn silage on performances of dairy cows during the dry season. Twenty four Holstein Friesian crossbred (>87.5% Holstein Friesian) lactating dairy cows in mid lactation; averaging 16.5${\pm}$2.0 kg of milk, 121${\pm}$22 days in milk, 54.5${\pm}$4.5 months old and 440${\pm}$31 kg live weight, were stratified for milk yield, days in milk, age, stage of lactation and body weight, and then randomly allocated to two treatment groups (12 cows in each group). The first group was fed corn silage together with commercial concentrate while the second group was fed chopped whole sugar cane together with commercial concentrate. All cows consumed similar DM, however, cows on corn silage consumed more CP while cows on chopped whole sugar cane consumed more $NE_{LP}$. No significant differences in performances between the two groups were observed except for final live weight and body weight change. Cows on chopped whole sugar cane showed higher final live weight and gained more weight than cows on corn silage. The present study clearly indicates that chopped whole sugar cane can be fed to lactating dairy cows, while giving similar milk yield to corn silage.

Integrated Hydrolyzation and Fermentation of Sugar Beet Pulp to Bioethanol

  • Rezic, Tonic;Oros, Damir;Markovic, Iva;Kracher, Daniel;Ludwig, Roland;Santek, Bozidar
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1244-1252
    • /
    • 2013
  • Sugar beet pulp is an abundant industrial waste material that holds a great potential for bioethanol production owing to its high content of cellulose, hemicelluloses, and pectin. Its structural and chemical robustness limits the yield of fermentable sugars obtained by hydrolyzation and represents the main bottleneck for bioethanol production. Physical (ultrasound and thermal) pretreatment methods were tested and combined with enzymatic hydrolysis by cellulase and pectinase to evaluate the most efficient strategy. The optimized hydrolysis process was combined with a fermentation step using a Saccharomyces cerevisiae strain for ethanol production in a single-tank bioreactor. Optimal sugar beet pulp conversion was achieved at a concentration of 60 g/l (39% of dry weight) and a bioreactor stirrer speed of 960 rpm. The maximum ethanol yield was 0.1 g ethanol/g of dry weight (0.25 g ethanol/g total sugar content), the efficiency of ethanol production was 49%, and the productivity of the bioprocess was 0.29 $g/l{\cdot}h$, respectively.

The Effect of Antiseptic and Sugar Solution on Colony Development of the Bumblebees, Bombus ignitus and B. terrestris

  • Yoon Hyung Joo;Kim Sam Eun;Lee Sang Beom;Seol Kwang Youl
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.11 no.1
    • /
    • pp.43-48
    • /
    • 2005
  • We investigated possible effect of different concentration of sugar solution and addition of antiseptic in the solution on oviposition and colony development of Bombus ignitus and B. terrestris. The rates of oviposition, colony foundation and progeny-queen production of B. ignitus were 1.2-3.0 fold higher in the 40$\%$ sugar solution than those of the 50$\%$ sugar solution. The rates of oviposition, colony foundation and progeny­queen production were 1.1-2.6 fold higher in the 40$\%$ sugar solution added in 0.3$\%$ sorbic acid as antiseptic than those of the 40$\%$ sugar solution. Further, the death rate within one month was 1.7 fold lower in the 40$\%$ sugar solution added in 0.3$\%$ sorbic acid than that of 40$\%$ sugar solution alone. In the comparison of the colony development tested using imported sugar solution, the Beehappy???, the 40$\%$ sugar solution added to antiseptic and the 40$\%$ sugar solution with­out antiseptic, the 40$\%$ sugar solution added to antiseptic was about equal to the Beehappy??? in colony development of B. terrestris. Further, the number of adults produced was 1.2-3.0 fold higher in the 40$\%$ sugar solution added to antiseptic than that of the Bee­happy???. Therefore the 40$\%$ sugar solution was more effective than the 50$\%$ sugar solution, and the 40$\%$ sugar solution added to antiseptic was the most effective in colony development and mass rearing of bumblebee.

Effects of Oxygen Supply and Mixed Sugar Concentration on ${\small{D}}$-Ribose Production by a Transketolase-Deficient Bacillus subtilis SPK1

  • Park, Yong-Cheol;Lee, Hae-Jin;Kim, Chang Sup;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.560-564
    • /
    • 2013
  • ${\small{D}}$-Ribose is a value-added five-carbon sugar used for riboflavin production. To investigate the effects of oxygen supply and mixed sugar concentration on microbial production of ${\small{D}}$-ribose, a transketolase-deficient Bacillus subtilis SPK1 was cultured batch-wise using xylose and glucose. A change of agitation speed from 300 rpm to 600 rpm at 1 vvm of air supply increased both the xylose consumption rate and ${\small{D}}$-ribose production rate. Because the sum of the specific consumption rates for xylose and glucose was similar at all agitation speeds, metabolic preferences between xylose and glucose might depend on oxygen supply. Although B. subtilis SPK1 can take up xylose and glucose by the active transport mechanism, a high initial concentration of xylose and glucose was not beneficial for high ${\small{D}}$-ribose production.

Solid Substrate and Submerged Culture Fermentation of Sugar Cane Bagasse for the Production of cellulase and Reducing Sugars by a Local Isolate, Aspergillus terreus SUK-1

  • Wan Mohtar, Yusoff;Massadeh, Muhannad Illayan;Kader, Jalil
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.770-775
    • /
    • 2000
  • Several process parameters were studied to ascertain the effect on degradation of sugar cane bagasse in relation to the production of cellulase enzyme and reducing sugars by Solid Substrate Fermentation (SSF) and Submerged Culture Fermentation (SCF) of Aspergillus terreus SUK-1. The effect of air-flow rate (0-1.3 v/v/m), of different ratios of substrate weight to liquid volume (1:6, 1:10, 1:20, and 1:30 w/v, g/ml), scale-up effect (10, 20, and 100 times of 1:10 ration, w/v) and the effect of temperature (30, 40, 50, and $60^{\circ}C$) in SSF were studied. Air-flow rate of 1.0 v/v/m gave the highest enzyme activity (FPase 0.25 IU/ml, CMCase 1.24 IU/ml) and reducing sugars concentration (0.72 mg/ml). Experiment using 1:10 ratio (w/v) was found to support maximum cellulase activity (FPase 0.58 IU/ml, CMCase 1.97 IU/ml) and reducing sugar concentration (1.23 mg/ml). Scaling-up the ratio of 1:10(w/v) by a factor of 20 gave the highest cellulase activity (FPase 0.71 IU/ml, CMCase 2.25 IU/ml) and reducing sugar concentration (3.67 mg/ml). The optimum temperature for cellulase activity and reducing sugar production was $50^{\circ}C$(FPase 0.792 IU/ml, CMCase 2.25 IU/ml and 3.85 mg/ml for reducing sugar concentration). For SCF, the activity of cellulase enzyme and reducing sugar concentration was found to be lower than that obtained for SSF. The highest cellulase activity obtained in SCF was 50% lower than the highest cellulase activity in SSF, while for reducing sugar concentration, the highest concentration obtained in SCF was 90% lower than that obtained in SSF.

  • PDF

A Study on the Effect of Initial pH and Cultivation Temperature of Substrate on the Biomass Production and COD-reduction in the Yeast Cultivation in Sugar Beet Stillages (사탕무 알콜증류폐액을 기질로 효모균체를 생산할 때 기질의 초기 pH와 배양온도가 균체생산량과 COD감소에 미치는 영향)

  • Lee, Ki Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.100-106
    • /
    • 2005
  • Sugar beet stillages were used as a substrate for the production of single cell protein by the thermotolerant yeasts Candida rugosa, Kluyveromyces marxianus and C. utilis. The biomass production increased in accordance with the increase of pH-value, but protein content decreased. C. rugosa showed the highest crude protein production as 3.68g/l and C. utilis 2.9g/l, Kl. marxianus 2.30g/l, respectively. The rate of COD reduction in stillage versus crude protein production of C. rugosa showed the highest value as 0.35~0.39g/l as a good strain for single cell protein production using sugar beet stillages.

  • PDF

Waste Reuse in Sugar Industries

  • Ansari, Abdul Khalique
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.122-131
    • /
    • 2001
  • Pakistan being the 6$^{th}$ largest sugar producer has over 75 sugar mills with annual production capacity of about 2.4 million tons during 1996-97. The contribution of Sindh with 27 sugar mills is recorded over 50% of the total sugar production. The majority of the mills in Pakistan use the Defecation-Remelt-Phosphitation (DRP; 24 mills), Defecation-Remelt-Carbonation (DRC; 21 mills) and Defecation-Remelt Carbonation and Sulphitation (DRCS; 11 mills) process. Seven of the 75 sugar mills in Pakistan also produce industrial alcohol from molasses, a by- product of sugar manufacturing process. These sugar industries also produce fly ash, which have been found to contain unburned carbon and reach as far as four-kilo meter area with the wind direction, threatening the community health of people living around, besides posing other aesthetic problems. The untreated wastewater, in many cases, finds its way to open surface drains causing serious threat to livestock, flora and fauna. One study showed that fly ash emitted from the chimneys contain particle size ranging from 38 ${\mu}{\textrm}{m}$ to 1000 ${\mu}{\textrm}{m}$. About 50 per cent of each fly ash samples were above 300 ${\mu}{\textrm}{m}$ in size and were mostly unburned Carbon particles, which produced 85% weight loss on burning in air atmosphere at 1000${\mu}{\textrm}{m}$. This fly ash (mostly carbon) was the main cause of many health and aesthetic problems in the sugar mill vicinity. The environmental challenge for the local sugar mills is associated with liquid waste gaseous emission and solid waste. This paper discusses various waste recycling technologies and practices in sugar industries of Pakistan. The application of EM technology and Biogas technology has proved very successful in reusing the sugar industry wastewater and mud, which otherwise were going waste.

  • PDF

Comparative Transcriptome Analysis of Sucrose Biosynthesis-Associated Gene Expression Using RNA-Seq at Various Growth Periods in Sugar Beet (Beta vulgaris L.)

  • Baul Yang;Ye-Jin Lee;Dong-Gun Kim;Sang Hoon Kim;Woon Ji Kim;Jae Hoon Kim;So Hyeon Baek;Joon-Woo Ahn;Chang-Hyu Bae;Jaihyunk Ryu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.63-63
    • /
    • 2023
  • Sugar beet (Beta vulgaris L.) is one of the most important sugar crops and provides up to 30% of the world's sugar production. In this study, we mainly performed RNA-sequencing to obtain identify putative genes involved in biosynthesis pathway of sucrose in sugar beet and comparative transcriptomic analyses in the four developmental stages (50, 90, 160 and 330 days after seedling). As a result of the sugar content analysis, it was increased significantly from 50 to 160 days after seedling (DAS), and then decreased at 330 DAS. On the other hand, the taproot weight, length, and width were increased during all the growth periods. Out of 21,451 genes with expressed value, 21,402 (99.77%) genes had functional descriptions. Among the three comparisons, S1 (50 DAS) vs. S2 (90 DAS), S1 vs. S3 (160 DAS), and S1 vs. S4 (330 DAS), expression profiling of the transcripts was identified 4,991 with differentially expressed genes (DEGs). By comparing the top 20 enriched gene ontology (GO) terms as three comparisons, the top GO terms were commonly confirmed with external encapsulating structure, cell wall, and extracellular regions. In addition, the 38 enriched candidate genes related to sucrose biosynthetic pathway were screened from the entire DEG pool, and the candidate genes might be providing a basic data for further sugar metabolism studies in development of sugar beet taproot.

  • PDF

Yeast Biomass Production from Concentrated Sugar Cane Stillage Using a Thermotolerant Candida rugosa

  • Lee, Ki-Young;Lee, Sung-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.114-116
    • /
    • 1995
  • Concentrated Brazillian sugar cane stillage was used as a substrate for the yeast biomass production using Candida rugosa isolated from East Africa. At the optimum stillage concentration of 10% dry matter, biomass production was 20.4 g/l and COD reduction rate was 41%. The specific growth rate of the yeast was 0.17 $h^{-1}$ and the corresponding productivity 0.91 g $l{-1} h^{-1}$ in the batch fermentation was observed at $40{\circ}^C$.

  • PDF

Using of Immobilized Yeast Cells for the Production of Sparkling Wine (발포성 포도주의 생산에 고정화 효모의 이용)

  • Lee, Yong-Su;Lee, Geon-Pyo;Choe, Jin-Sang
    • Food Science and Preservation
    • /
    • v.5 no.2
    • /
    • pp.186-190
    • /
    • 1998
  • In order to investigate the possible application of immobilized yeast cells in sparkling wine production instead of riddling puns by the traditional method, fermentation characteristics were tested during the sparkling wine fermentation in the bottle using immobilized yeast cells with alginate. The rates of sugar consumption and alcohol production were faster with free cells than those with immobilized cells during the fermentation. The higher concentration of yeast cells and the lower concentration of alginate in the cell immobilization resulted in the faster sugar consumption and alcohol production. It also resulted in the increase of yeast cell concentration released from immobilized beads during the fermentation. However, no differences were shown in the contents of alcohol, residual sugar and CO2 pressure after fermentation. In case concentration of yeast cells released from immobilized beads during bottle fermentation, the higher concentration of alginate had and the lower had.

  • PDF