• Title/Summary/Keyword: sudden high waves

Search Result 19, Processing Time 0.031 seconds

A Proposal for Criterion of Sudden High Waves in the East Sea (동해에서 돌연고파의 기준 제안)

  • Kim, In-Chul;Oh, Jihee;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.3
    • /
    • pp.117-123
    • /
    • 2016
  • One of the major characteristics of the swell-like high waves, which occur in the East Sea mostly in winter with large height and long period, is its suddenness associated with the rapid development of high waves from a calm state of sea. To represent such suddenness, in this study, the term sudden high waves is introduced. To propose the criterion of sudden high waves, comparisons were made between the wave measurement data at Gangneung and Wangdolcho for eight years from 2005 and the record of marine accidents and property damage on the coast of Gangwon-do Province and Gyeongsangbuk-do Province during the same period. It was found that most of the accidents occurred when ${\Delta}(H^2L)/{\Delta}t$ was approximately greater than the top 20% or $88.6m^3/hr$, which is therefore proposed as the criterion of sudden high waves. The used variable represents the rate of increase of the wave energy in one wavelength, including not only height and period but also suddenness of high waves.

Experimental study on compression wave propagating in a sudden reduction duct (급축소관을 전파하는 압축파에 관한 실험적 연구)

  • Kim, Hui-Dong;Matsuo, Kazuyasu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1139-1148
    • /
    • 1997
  • Compression waves propagating in a high-speed railway tunnel develops large pressure fluctuations on the train body or tunnel structures. The pressure fluctuations would cause an ear discomfort for the passengers and increase the aerodynamic resistance of trains. As a fundamental research to resolve the pressure wave phenomenon in the tunnel, experiments were carried out by using a shock tube with an open end. A blockage to model trains inside the tunnel was installed on the lower wall of shock tube, thus forming a sudden cross-sectional area reduction. The compression waves were obtained by the fast opening gate valve instead of a conventional diaphragm of shock tube and measured by the flush mounted pressure transducers with a high sensitivity. The experimental results were compared with the previous theoretical analyses. The results show that the ratio of the reflected to the incident compression wave at the sudden cross-sectional area reduction increases but the ratio of the passing to the incident compression wave decreases, as the incident compression wave becomes stronger. This experimental results are in good agreements with the previous theoretical ones. The maximum pressure gradient of the compression wave abruptly increases but the width of the wave front does not vary, as it passes over the sudden cross-sectional area reduction.

Numerical Analysis on Characteristics of Blast Wave in Open Space and Structure (개활지 및 구조물 내에서의 폭풍파 특성에 대한 수치 분석)

  • Roh, Taejun;Lee, Younghun;Ji, Juntae;Lee, Woonghyun;Yoh, Jai-ick
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.43-51
    • /
    • 2020
  • In this study, numerical analysis was carried out on a complex pressure field of blast waves caused by the detonation of high explosives in various environments. The generated blast waves propagated in the air, upon the sudden release of high energy induced by the explosion. Reflected waves were created when the pressure waves encountered certain obstacles such as the ground or the walls of structures. The propagation of the blast waves and its interaction with the reflected waves were simulated. An adaptive mesh refinement was applied to improve the efficiency of distribution of computer resource, for the computational calculation of the blast wave propagation in a wide open space. In addition, the integration of the calculation domains for the explosive and air were considered when the maximum density of the explosive region was below critical value. The results were verified by comparison with the pressure time history from blast wave experiments performed under two topographical conditions.

A Study on the Aerodynamic Noise of a Supersonic Exhaust Nozzle of Slotted Tube (슬롯관형 초음속 배기노즐의 공력소음에 관한 연구)

  • Lee, Dong-Hoon;Seto, Kunisato
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.132-142
    • /
    • 2000
  • The objective of this study is to experimentally investigate the noise propagating characteristics, the noise reduction mechanism and the performance of a slotted tube attached at the exit plane of a circular convergent nozzle. The experiment is performed through the systematic change of the jet pressure ratio and the slot length under the condition of two kinds of open area ratios, 25% and 51%. The open area ratio calculated by the tube length equivalent for the slot length is defined as the ratio of the total slot area to the surface area of a slotted tube. The experimental results for the near and far field sound, the visualization of jet structures and the static pressure distributions in the jet passing through a slotted tube are presented and explained in comparison with those for a simple tube. The propagating characteristics of supersonic jet noises from the slotted tube is closely connected with the slot length rather than the open area ratio, and its propagating pattern is similar to the simple tube. It is shown that the slotted tube has a good performance to suppress the shock-associated noise as well as the turbulent mixing noise in the range of a limited jet pressure and slot dimension. The considerable suppression of the shock‘associated noise is mainly due to the pressure relief caused by the high-speed jets passing through the slots on the tube. Both the strength of shock waves and the interval between them in a jet plume are decreased by the pressure relief. Moreover, the pressure relief is divided into the gradual and the sudden relief depending upon the open area ratio of the slotted tube. Consequently, the shock waves in a jet plume are also changed by the type of pressure relief. The gradual pressure relief caused by the slotted tube with the open area ratio 25% generates the weak oblique shock waves. On the contrary, the weak normal shock waves appear due to the sudden pressure relief caused by the slotted tube with the open area ratio 51%.

Development of Heat Wave Indices for Korean Peninsula

  • Chandrasekara, Sewwandhi S.K.;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.366-366
    • /
    • 2020
  • The drought is one of the extreme natural disasters observed in any climate zone and it is due to the deficiency in moisture. The flash drought is identified recently as a subdivision of drought and it is an extreme event distinguished by sudden onset and rapid intensification of drought conditions with severe impacts. The main cause for the flash drought is coupled situation due to precipitation deficit and high evapotranspiration. Hence, heat waves plays major role in identification of flash drought. Therefore, this study focused on identifying changes in distribution of heat waves for Korean Peninsula. The daily maximum and minimum temperature data were used in this study. The heat wave, heat wave intensity and heat wave intensity index were derived. The results of the study would be an input for the future studies on identification of flash drought in Korean Peninsula.

  • PDF

Theoretical study on compression wave propagating in a sudden reduction duct (급축소관을 전파하는 압축파에 관한 이론적 연구)

  • Kim, Hui-Dong;Kim, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.89-98
    • /
    • 1997
  • Compression waves propagating in a high speed railway tunnel impose large pressure fluctuations on the train body or tunnel structures. The pressure fluctuations can cause ear discomfort for the passengers and increase the aerodynamic resistance of trains. As a fundamental research to resolve the pressure wave phenomenon in the tunnel, a steady theory of Chester-Chisnell- Whitham was applied to a simple shock tube with a sudden cross-sectional area reduction to model trains inside the tunnel. The results of the present theoretical analysis were compared with the experiments of the shock tube. The results show that the reflected compression wave from the model becomes stronger as the strength of incident compression wave and the blockage ratio increase. However, the compression wave passing through the model is not strongly dependent on the blockage ratio. The theoretical results are in good agreement with the experiments.

Development of AE/MS monitoring system and its application (AE/MS 모니터링시스템개발과 적용연구)

  • Cheon, Dae-Sung;Jung, Yong-Bok;Park, Chan;Synn, Joong-Ho;Jang, Hyun-Ick
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.199-210
    • /
    • 2008
  • Acoustic emission(AE)/Microseimsic(MS) activities are low-energy seismic events associated with a sudden inelastic deformation such as the sudden movement of existing fractures, the generation of new fractures or the propagation of fractures. These events rapidly increase before major failure and happen within a given rock volume and radiate detectable seismic waves. The main difference between AE and MS signals is that the seismic motion frequencies of AE signals are higher than those of MS signals. As the failure of geotechnical structures usually happens as a high velocity and small displacement, it is not easy to determine the precursor and initiation stress level of failure in displacement detection method. To overcome this problem, AE/MS techniques for detection of structure failure and damage have recently adopt in civil engineering. In this study, AE/MS monitoring system, which consist of sensor, data acquisition and operation program, is constructed with domestic technology. To verify and optimize the developed system, we are now carrying out the field application at an underground research laboratory and the developed AE/MS monitoring will be used in detecting of seismic events with various scales.

  • PDF

A Numerical Study on Aerodynamic Characteristics in Tunnel for High Speed Combi Train-HSB (여객/화물 복합열차 HSB의 터널 공력특성에 대한 시뮬레이션 연구)

  • Rho, Joo-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.54-59
    • /
    • 2014
  • The new high speed combi train prototype project was developed which named HSB. It runs over the speed of 330km/h. As the speed of the train exceeds over 300km/h, due to pressure change in tunnel, aerodynamic problems such as sudden drag increase, severe acoustic noise, passenger discomfort and tunnel pressure sonic boom were occurred. This aerodynamic characteristics in tunnel should be reviewed in early design state to enhance the performance and driving quality of new high speed train. In this paper, the aerodynamic characteristics in tunnel for HSB such as pressure waves in tunnel, a rate of pressure change in cabin and micro pressure wave that cause sonic boom outside tunnel are analyzed by 2D axisymmetric CFD simulations. The results are also compared with the value for ordinary high speed train like the KTX-Sancheon. It is helpful how to design the configuration of HSB train. Finally it shows that the HSB train was well designed in tunnel condition because all values fulfill the criterions on UIC code and Korean national regulations.

Shock Tube and Modeling Study of the Monomethylamine Oxidation at High Temperature

  • Shin, Kuan-Soo;Yoo, Sang-Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.293-297
    • /
    • 2004
  • The ignition of monomethylamine was studied in reflected shock waves over the temperature range of 1255- 1579 K and the pressure range of 1.04-1.51 bar. The ignition delay time was measured by the sudden increase of pressure profile and the radiation emitted by OH radicals. The relationship between the ignition delay time and the concentrations of monomethylamine and oxygen was determined in the form of mass-action expressions with an Arrhenius temperature dependence. In contrast to the behavior observed in hydrocarbons, monomethylamine acts to accelerate rather than inhibit its own ignition. And numerical modeling of the ignition of $CH_3NH_2$ has also been carried out to test the several kinetic mechanisms.

A Study on the Variation of the Ionosphere Through SID Monitoring (SID 모니터링을 통한 전리층의 변화 관측 연구)

  • Kang, Yong Hee;Lee, Oh-Kyun;Kwak, Young-Sil;Lee, Jae-Jin
    • Journal of Science Education
    • /
    • v.34 no.2
    • /
    • pp.432-439
    • /
    • 2010
  • The purpose of this study is to investigate the characteristics of the ionosphere by monitoring VLF radio wave. For this purpose, we set up the SID(Sudden Ionospheric Disturbance) monitoring station in Pohang($36.03^{\circ}N$, $129.35^{\circ}E$), Korea receiving VLF radio wave(22.2kHz) transmitted from Ebino($32.04^{\circ}N$, $130.81^{\circ}E$), Japan. The observed data of radio wave intensities are analyzed to interpret the condition of the ionosphere. We can summarize the results as follows: Radio waves show regular daily variation. We can confirm the daily variation as a result of the formation of D layer. In relation to formation or extinction of D layer, intensity of radio wave gets weak right after sunrise and sunset. Southing altitude also affects the intensity of day time radio wave. At night when D layer disappears, the radio waves shows very irregular changes. The observed radio waves also shows the influence of the seasonal ionospheric variation. Long term observation could provide more detailed interpretation of daily as well as seasonal variation of ionosphere.

  • PDF