• Title/Summary/Keyword: sucrose transport

Search Result 33, Processing Time 0.022 seconds

The Induction Time of Sucrose Active Transport System during the Phloem Cell Development in Suspension Cultures of Streptantus tortus Cotyledon (Streptanthus tortus 자엽의 배양세포에서 사부세포 발달동안 Sucrose 능동수송계의 유도 시기)

  • Cho, Bong-Heuy
    • Journal of Plant Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.169-173
    • /
    • 2004
  • Parenchyma cells of Streptanthus tortus suspension cultures possessed the different transport system for aldose-formed D-glucose and for ketose-formed D-fructose. $K_{m}$ value for D-glucose and D-fructose were 0.28mM and 15.02mM, respectively. $K_{m}$ value of D-mannose was 0.44 mM which is similar to the D-glucose transport system, but D-mannose was transported also through its own special uptake system. Parenchyma cells possessed the transport system of L-glucose, but the function of L-glucose was not known at all. Protoplast of parenchyma cells possessed only the monosugars transport system, but didn't possess the disugars, sucrose transport system. Early developing phloem protoplasts possessed glucose and sucrose transport system at the same time. On the contrary, in the complete developed phloem cells disappeared preexisted glucose transport system in the parenchyma cells, only new induced sucrose transport system existed.ted.

Isolation of Phloem Cells and Active Transport of Sucrose by Isolated Phloem and Parenchyma Cells of Streptanthus tortus Suspension Cultures (Streptanthus tortus의 培養細胞로부터 사부 세포의 분리와 분리된 篩部 및 柔組織 細胞에서 설탕의 능동수송)

  • 조봉희
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.1
    • /
    • pp.7-11
    • /
    • 1998
  • Protoplasts were isolated from the parenchyma supension cultured cells of Streptanthus tortus using hydrolytic enzymes, 0.03% cellulase + 0.02% pectinase. Phloem cells and companion protoplasts were isolated from differentiated suspension cultured cells using hydrolytic enzymes, 0.2% macerase + 0.03% cellulase + 0.02% pectinase + 0.025% rohamet PC. Isolated parenchyma -and companion- protoplasts transported glucose into the cells, but not transported sucrose at all. On the other hand, isolated phloem cells transported sucrose into the cells actively, but not transported glucose. These results show for the first time that loading of sucrose into the phloem cells without nucleus was possible without contributing of companion cells and companion cells had not the ability to transport sucrose directly because of lack of sucrose carriers in the membrane. The sucrose transport into the isolated phloem cells depend on metabolic energy.

  • PDF

Different Levels of N Supply Impacts on Seed Yield by Modulating C and N Metabolism in Brassica Napus

  • Lee, Bok-Rye;Lee, Hyo;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.2
    • /
    • pp.75-80
    • /
    • 2019
  • Oilseed rape is known to crop having low nitrogen use efficiency (NUE) but requires high levels of N fertilizer. NUE is associated with N remobilization from source to sink organ, consequently affects seed yield. Remobilization of leaf N is also related to transport of C/N metabolites in phloem. However, interaction between seed yield and phloem transport was not fully documented. In response to seed yield, N and C metabolites and their transport into seed from bolting to pod filling stage investigated in two contrasting genotypes (Capitol and Pollen) cultivated under ample (HN) or limiting nitrate (LN) supply. Seed yield was significantly reduced in N limitation and its reduction rate was much lower in Capitol than in Pollen compared to HN treated plants. Amino acid and protein content was higher in Capitol than in Pollen at bolting stage. They gradually decreased during plant development but not significant between two cultivars and/or two treatments. Glucose, fructose and sucrose content were 1.8-,1.6- or 1.25-fold higher in LN condition than in HN condition, respectively. Amino acid and sucrose content in phloem were largely higher in Capitol than in Pollen under LN condition. These results indicate that the higher seed yield might be related to greater transport ability of amino acid and sucrose in phloem under LN condition.

Characterization of the scr Gene Cluster Involved! in Sucrose Utilization in Bifidobacterium longum (Bifidobacterium longum의 Sucrose 대사 관련 scr 유전자군의 특성 규명)

  • 권태연;이종훈
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.3
    • /
    • pp.199-205
    • /
    • 2004
  • The nucleotide sequence of 8.6-kb EcoRI fragment containing sucrose phosphorylase gene isolated from Bifidobacterium longum SJ32 was determined. It was found that the fragment contained five open reading frames including the gene cluster for sucrose utilization such as a sucrose phosphorylase (ScrP), a sucrose transporter (ScrT), and a GalR-LacI-type transcriptional regulator (ScrR) identified by amino acid homology. Each gene showed over 94% amino acid homology among various B. longum strains. Genomic organization of the gene cluster is the same as those of other strains of B. longum but different from that of B. lactis. In spite of high homology of each gene among B. longum strains, the difference of flanking sequences of the gene cluster between strains SJ32 and NCC2705 insinuates the horizontal transfer of scrPTR between B. longum strains. The increase of sucrose phosphorylase activity in heterologous E. coli system by the co-expression of scrT with scrP against the single expression of scrP was measured. It seems to be the result of sucrose uptake increment by scrT in the host and is an indirect evidence that scrT is the gene for sucrose transport. The existence of multiple sucrose uptake systems in B. longum is supposed from the findings of several genes besides scrPTR involved in sucrose uptake in the genome of B. longum NCC2705.

Transport Coefficients Across A Charged Mosaic Membrane III

  • Lee, Jungwoon;Minho Kang;Song, Myung-Kwan;Wongkang Yang;Lee, Jang-Woo
    • Korean Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.61-67
    • /
    • 2003
  • Various characteristics of ion transport properties of a charged mosaic membrane with a parallel array of positive and negative functional charges were investigated, From the analysis of the volume flux, it was found that the salt flux based on nonequilibrium thermodynamics, preferential salt transport across the charged mosaic membrane. Transport properties of the magnesium sulfate(MgSO$_4$) and sucrose across the charged mosaic membrane were estimated. As a result, metal salts transport depended largely on the charged states and molecular weight otherwise nonelectrolyte solution was rejected under all experimental conditions. On the other hand, the reflection coefficient s indicated the negative value that suggested preferential material transport and was independent of charged mosaic thickness.

Effect of Sugar Starvation on the Sugar Transport System in Suspension Cultures of Streptanthus trotus (Streptanthus tortus 배양 세포에서 당류고갈이 당류 수송계에 미치는 영향)

  • 조봉희
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.1
    • /
    • pp.47-50
    • /
    • 2000
  • In suspension cultures of Streptanthus. the uptake rate of sugar was increased during the ceil starvation of sugar in the medium. The maximal uptake rate obtained with 3 days of cell starvation. Sugar transport system induced by the sugar starvation was completely inhibited by 10 $\mu$M cycloheximide. Plant cells are known to possess only one sugar transport system, but the uptake rate of glucose obtained a saturated kinetic while the one of sucrose had two different kinetics after the sugar starvation. Induced sugar transport systems had different kinetics compared to plant cell. These results showed that higher plants have adaptable ability to induce new sugar transport systems when the environment changed unsuitable.

  • PDF

Transformation of Rice (Oryza sativa L.) with Sucrose Transporter cDNA from Potato (Solanum tuberosum L.) (감자 Sucrose Transporter 유전자의 벼 Genome 내로의 도입)

  • 백소현;유남희;윤성중
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.2
    • /
    • pp.97-101
    • /
    • 2001
  • The transport and allocation of photosynthetic assimilate is an important regulatory factor in plant productivity, In order to modify assimilate partitioning in rice, transgenic plants containing a potato sucrose transporter (SuT) gene were developed. Calli derived from rice seeds (Oryza sativa L. cv Dongjin) were cocultured with A. tumefaciens LBA 4404 harboring the SuT gene. Calli were transferred to MS medium supplemented with 50 mg/L hygromycin, 500 mg/L carbenicillin, 2 mg/L kinetin, 0.1 mg/L NAA. After 2 weeks, hygromycin resistant shoots were obtained from the calli on the selection medium. Roots were induced from the putative transgenic shoots on rooting MS medium supplemented with 250 mg/L cabenicillin. Plant regeneration rate from the calli was about 150%. Stable incorporation of the potato SuT gene into rice genomic DNA was confirmed by PCR and Southern blot analysis.

  • PDF

Apoplastic Phloem Loading of Photoassimilate (광합성산물의 아포플라스트 체관부적재 기작)

  • Kim, Song-Mun;Hur, Jang-Hyun;Han, Dae-Sung
    • Korean Journal of Weed Science
    • /
    • v.17 no.4
    • /
    • pp.345-361
    • /
    • 1997
  • Photoassimilates translocate from regions of carbohydrate synthensis(source) to regions of carbohydrate utilization or storage(sink). In the source, assimilate loads into the phloem for long-distance transport. Current evidence suggests that there are twig loading mechanisms : one involves assimilate transfer via the apoplasm and then load into the phloem by carrier-mediated proton-sucrose cotransport, while the other involves movement through the continuous symplastic connections between the mesophyll cells and the phloem. Inspite of problems associated with the interpretation of experiments, the evidence for apoplastic loading remains convincing because the apoplastic loading systems explains well the observed accumulation capacity arid the selectivity of assimilate uptake by tile phloem.

  • PDF

Separation of Heavy Metal Ions across Novel Mosaic Membrane (하전모자이크 막을 사용하여 중금속이온의 분리)

  • Song, Myung-Kwan;Lee, Jang-Oo;Yang, Wong-Kang
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2005.11a
    • /
    • pp.96-101
    • /
    • 2005
  • A theory for the material transports through ion exchange membrane has been developed on the basis of nonequilibrium thermodynamics by removing the assumption of solvent flow in the previous paper and applied to a detailed study of the ionic transport properties of new charged mosaic membrane(CMM) system. The CMM having two different fixed charges in the polymer membrane indicated unique selective transport behavior then ion-exchange membrane. The separation behavior of ion transport across the CMM with a parallel array of positive and negative functional charges were investigated. It was well-known the analysis of the volume flux and solute flux based on nonequilibrium thermodynamics. Our suggests preferential salt transport across the charged mosaic membranes. Transport properties of heavy metal ions, $Mg^{2+}$, $Mn^{2+}$and sucrose system across the charged mosaic membrane were estimated. As a result, we were known metal salts transport depended largely on the CMM. The reflection coefficient indicated the negative value that suggested preferential material transport and was independent of charged mosaic membrane thickness.

  • PDF

Study of the Function of β-D-fructofuranosidase by Plant Histological Method (식물 조직학적 방법에 의한 β-D-fructofuranosidase의 기능 연구)

  • Donggiun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.587-592
    • /
    • 2023
  • Plant growth is regulated by a variety of factors, including organic matter availability. Organic nutrients are carbohydrate molecules from photosynthetic products produced by tissues associated with carbon and energy fixation called "sources". These compounds flow through plant vascular bundles into non-photosynthetic or growing tissues called "sinks". Among these possible compounds, the disaccharide fructosyl glucose, sucrose, is the most representative. During the transport of sucrose, the pathway from the source to the sinks can include hydrolysis of sucrose into glucose and fructose derivatives or direct transfer of sucrose. Among the enzymes involved in this, β-D-fructofuranosidase is the most important. Soluble neutral β-D-fructofuranosidase, one of several isoenzymes, is located in intracellular protoplasts and helps plant cells metabolize sucrose to produce energy. In order to track the activity of this enzyme during the course of plant growth, histological methods were used for the most effective immunolocalization. As a result, the activity was higher in the phloem and epidermis than in the mesophyll tissue in the leaf. In the growing stem, activity was high in the phloem, epidermis, and cortex. The activity of the root, which is a sink tissue, was high in all parts, but especially the highest in the root tip part. It is thought that this is because it helps unloading of sucrose in sink tissues that require sucrose degradation and plays a role in hydrolysising sucrose.