• Title/Summary/Keyword: sucrose solution

Search Result 405, Processing Time 0.032 seconds

Studies on the replacement of raw materials for caramel coloring. - The effects of syrups and catalysts on the properties of Caramel coloring - (Caramel 색소(色素)의 원료대체(原料代替)에 관(關)한 연구(硏究) - 당액(糖液) 및 촉매(觸媒)의 종류(種類)가 Caramel의 성상(性狀)에 미치는 영향(影響) -)

  • Kim, S.Y.;Chang, K.S.
    • Korean Journal of Agricultural Science
    • /
    • v.3 no.1
    • /
    • pp.105-119
    • /
    • 1976
  • Sucrose, glucose, starches hydrolyzates and raw starchy materials hydrolyzates were caramelized using various catalysis and the caramel products were analysed, in order to carry out the basic research for the replacement of caramel coloring. The results obtained were summarized as follows. 1. The caramel which was manufactured by sucrose syrup being pH 3.5 adjusted by sulfuric acid showed strong color intensity and hue as well as good stability in the solutions of table salt, tannin and alcohol. 2. The product caramelized from sucrose syrup being pH 9.5 adjusted by sodium carbonate showed very strong color intensity and black color component, and was quite stable in alcohol solution but not in table salt and tannin solutions. 3. The caramel products made from sucrose syrup using ammonium salts of strong acid like $NH_4Cl$ and $(NH_4)_2SO_4$ as catalyst showed strong color intensity and black color component but hazy apparence in solution of table salt, tannin and alcohol. 4. The product caramelized from glucose syrup being pH 9.5 adjusted by sodium carbonate indicated strong color intensity but weak red color component and was transparent in solution of table salt and alcohol but hazy in tannin solution. 5. In glucose caramel using $NH_4Cl$, $(NH_4)_2SO_4$, $(NH_4)_2CO_3$ and $(NH_4)_2SO_3$ as catalyst, $NH_4Cl$ plot was very weak in color intensity and insufficient in red color component but stable in solution of table salt, tannin and alcohol. In the case of $(NH_4)_2CO_3$, $(NH_4)_2SO_4$ and $(NH_4)_2SO_3$ plots, all products were strong in color intensity but little insufficient in red color component. On the stability in solutions, $(NH_4)_2SO_3$ plot was stable in two solutions expect tannin solution, $(NH_4)_2CO_3$ plot was only stable in alcohol solution and $(NH_4)_2SO_3$ plot was only stable in table salt solution. 6. When the acid hydrolyzed starch syrups without neutralization were caramelized using $(NH_4)_2SO_4$ as catalyst, the potato starch hydrolyzate caramel showed higher in color intensity being similar to its of glucose caramel than sweet potato starch hydrolyzate caramel and corn starch hydrolyzate caramel. 7. Dried sweet potato powder, dried acorns powders, the acorns (from Q. serrata THUNB and Q. acutissima CARR.) powders extracted with water for 7 days and with 50% alcohol solution for 24 hrs were hydrolyzed by sulfuric acid in autoclave at $3.5kg/cm^2$ as pressure for 60 mins, and were caramelized using $(NH_4)_2SO_4$ as catalyst. It was supposed that all of those products were poor quality on color and stability in solutions at the viewpoint of food coloring matter.

  • PDF

Ultrarapid Freezing of Mouse 2-Cell Embryos (생쥐 2-세포기 수정란의 초급속동결)

  • 강만종;이철상;한용만;유대열;이경광
    • Korean Journal of Animal Reproduction
    • /
    • v.14 no.1
    • /
    • pp.9-16
    • /
    • 1990
  • This study was carried out in order to investigate effects of cryoprotectant concentration and equilibration time on survival of ultrarapidly frozen 2-cell mouse embryos. Mouse 2-cell embryos, following dehydration by exposure to DMSO and sucrose, were directly immersed into liquid nitrogen and thawed in 37$^{\circ}C$ water. Viability was defined by development rate to the blastocyst stage after in vitro culture for 72 hours. The results are summarized as follows ; 1. When 0.25M of sucrose was added into the freezing medium at various concentrations of DMSO and dilution medium, higher development rate of embryo was obtained in 3.0M DMSO concentrations (82.6%). However, when sucrose concentraitons of 0.25 and 0.5 M were added to the freezing medium with 3.0 M DMSO and dilution medium, development rate of embryos were 81.7% and 24.1%, respectively. 2. In the equilibration time at room temperature, higher development rate was attained after short period of time (2.5min) in 3.0 M DMSO+0.25 M sucrose (85.9%). 3. The development rate of embryos at in vitro 2-cell, in vitro 2-cell, solution control and untreated control was 84.6%, 90.9%, 89.9%,, and 89.7%, respectively.

  • PDF

Effect of Saccharides and Incubation Temperature on pH and Total Acidity of Fermented Black Tea with Tea Fungus (배양액 제조에 사용된 당의 종류와 농도 및 배양 온도가 Tea Fungus발효 홍차의 pH 변화와 Total Acids생성에 미치는 영향)

  • Choi, Mi-Ae;Kim, Jeong-Ok;Choi, Kyung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.405-410
    • /
    • 1996
  • The fermented black tea with tea fungus (FBTF) known to cure various diseases was prepared by culturing tea fungus biomass in black tae with different kinds (sucrose, glucose, fructose and corn syrup) and concentrations (10-60% m/v) of saccharides. pH changes and total acid production of FBTF were investigated during 14 dats incubation at $5-45^{\circ}C$ The patterns of acid production in sucrose and fructose black tea solution were similar each other, and those in glucose and corn syrup black tea solution were similar each other showing that tea fungus biomass utilizes fructose than glucose more efficiently. The optimum incubation temperature for the formation and growth of tea fungus Biomass, and the acid production was $30^{\circ}C$ Low contents of total aids (0.1%-0.2%) were produced in 20% of higher concentrations of sucrose and fructose black tea solution, while 1.8% and 0.68% were produced in the 10% of sucrose and fructose black tea solutions, respectively, pH of FBTF dropped to 2.74-3.56 after 2 days of incubation of all the culture solution and Kept this level to 14 days incubation.

  • PDF

Toxicity Test of Sucrose and Trehalose Prior to Cryopreservation in Immature Bovine Oocytes

  • Park, Sang-Hyoun;Yu, Il-Jeoung
    • Journal of Embryo Transfer
    • /
    • v.23 no.4
    • /
    • pp.263-267
    • /
    • 2008
  • The purpose of this study was to determine toxic effect of sucrose and trehalose prior to cryopreservation on nuclear maturation and embryonic development in immature bovine oocytes. All cryoprotectant was prepared in tissue culture medium 199-HEPES (TCM 199-HEPES) with 10% fetal bovine serum (FBS). Immature oocytes were exposed to 1.2M ethylene glycol (EG) and 0.1M sucrose or 1.2M EG and 0.1M trehalose for 3 min and then were exposed to 3.2 M EG and 0.25 M sucrose or 3.2 M EG and 0.25 M trehalose for 1 min. Oocytes treated with cryoprotectants were exposed to 0.25 M sucrose or 0.25 M trehalose for 5 min and then 0.1 M sucrose or 0.1 M trehalose for 5 min. Depending on type of sugar added to cryopreservation solution, oocytes were allocated to sucrose group and trehalose group, respectively. Oocytes exposed to TCM 199-HEPES with 10% FBS were considered as control. Oocytes were cultured in TCM 199 supplemented with 10% FBS, 5 ng/ml epidermal growth factor, 0.01 IU/ml luteinizing hormone, and $1\;{\mu}g/ml$ estradiol for 24 h in $39^{\circ}C$, 5% $CO_2$. Nuclear maturation was assessed by staining oocytes with 1% aceto-orcein. Oocytes were fertilized in vitro and were cultured in TCM 199 supplemented with 10% FBS, 5 mM sodium pyruvate, and antibiotics in $39^{\circ}C$, 5% $CO_2$. The rates of cleavage and blastocyst, and cell number in blastocyst were assessed. Metaphase II rates were not different among experimental groups regardless of type of sugar. The cleavage rate of trehalose group (73.3%) was significantly higher (p<0.05) than those of sucrose group (62.8%) and control group (60.8%). The blastocyst rate was significantly higher in trehalose group (p<0.05). Mean cell number in blastocyst were not different among experimental groups, although cell number of blastocyst in trehalose group was significantly higher on day 7 (p<0.05). In conclusion, sucrose and trehalose were not toxic to immature bovine oocytes prior to cryopreservation. In particular, trehalose was more effective on embryonic development.

Development of Curdlan Separation Process with Density Gradient Centrfugation (Density Gradient를 이용한 식품소재를 커들란의 분리공정개발)

  • 김봉영;이중헌
    • KSBB Journal
    • /
    • v.16 no.5
    • /
    • pp.523-525
    • /
    • 2001
  • Curdlan is one biopolymer composed of ${\beta}$1,3-glucan and dissolved in a alkali solution but formed salt under neutral or acid condition. It was produced by Agrobactrium species and the separation process is necessary to make pure curdlan from the culture broth. The pH swing separation method was as feasible separation process using solubility changes with the pH difference. however, this method requires a lot of acid and alkali solution also produces a lot of waste. Therefore, an efficient process which could save energy and minimize toxic waste was developed. A density gradient separation process was developed in this research. High density sucrose solution was used as a separation agent. Curdlan was separated from the culture broth when the density of the sucrose solution was 1.15 g/L. Since the curdlan was produced on the surface of cell wall. the pre-treatment of culture broth was necessary. Curdlan recovery yield was increased up to 83% with the homogenization of the culture broth and further increased up to 87% with the treatment of alkai-acid solution.

  • PDF

Vitrification of Mouse Embryos in Ethylene Glycol-based Solutions (에틸렌 글리콜 동결 보호제를 이용한 생쥐 배아의 유리화 동결 보존)

  • Kim, Mi-Young;Lee, Eun-Suk;Lee, Seok-Won;Lee, Yu-Il
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.32 no.2
    • /
    • pp.177-185
    • /
    • 2005
  • Objective: This study was conducted to find an optimal condition for the vitrification of mouse morulae and expanded blastocysts. Materials and Methods: Mouse embryos were obtained at 2-cell stage and cultured to morula and expanded blastocyst stage in Human Tubal Fluid (HTF) medium supplemented with 10% Serum Substitute Supplement (SSS). The vitrification solutions used were EFS30, EFS35 and EFS40 that contains 30%, 35% and 40% ethylene glycol, respectively, with 18% ficoll and 0.5 M sucrose diluted in Dulbecco's phosphate-buffered saline (DPBS) medium supplemented with 10% SSS. The vitrification procedure was performed in EFS solution with three steps, followed by thawing in 6 steps with 0.5 M sucrose, and then survival and hatching-hatched rate per embryos recovered were compared among six groups. Results: After 24 h culture in different vitrification and thawing solution, the survival rate of morula embryos was 94.1%, 85.4% and 59.7% for EFS30, EFS35 and EFS40 group, respectively. Hatching rate of morula embryos after 72 h culture was 30.6%, 25% and 11.3% for EFS30, EFS35 and EFS40 group, respectively. The survival rate of expanded blastocyst embryos after 24 h culture was 90.4%, 98.5% and 100% for EFS30, EFS35 and EFS40 group, respectively. Hatching rate of expanded blastocyst embryos after 48 h culture was 46.2%, 57.6% and 64.3% for EFS30, EFS35 and EFS40 group, respectively. Conclusion: The EFS30 solution was the best for vitrification of mouse morulae. The EFS40 solution was the best for vitrification of mouse expanded blastocysts. The mouse expanded blastocyst was better than mouse morula for vitrification of mouse embryos.

Inhibition Effects of Caramelization Products from Sugar Solutions Subjected to Different Temperature on Polyphenol Oxidase (가열온도에 따른 당용액의 카라멜 생성물의 Polyphenol Oxidase에 대한 저해효과)

  • 이귀주;안선정
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.6
    • /
    • pp.1041-1046
    • /
    • 2001
  • Solutions of fructose, glucose and sucrose were heated without catalyst at various temperature for different length of time. Changes in the formation of early caramelization product and browning intensity as well as pH of heated sugar solutions were determined. Reducing powers of caramelization products (CP) and their inhibitory effects on polyphenol oxidase (PPO) were also determined and their correlations were discussed. The early CP and browning intensity increased with temperature and time, in the order of heated fructose>sucrose>glucose solutions (p<0.005), while pH decreased. pHs of sugar solutions heated at 20$0^{\circ}C$ showed in the range of 3.32 ~ 3.50. Reducing power of CP as well as their inhibitory effect on PPO also increased with temperature and time, respectively. Among sugar solutions, reducing power showed the same trends as above at both 15$0^{\circ}C$ and 17$0^{\circ}C$ (p<0.001). However, those of heated fructose solutions were the highest in the early stage, while those of heated sucrose solutions were the highest in the final stage at 20$0^{\circ}C$. This is due to the difference in CP formed. Sucrose solution heated at 20$0^{\circ}C$ showed the highest inhibitory effect, reducing PPO activity by 34.6%. From these results, it is considered that the inhibitory effect of CP on PPO is partly related to their reducing power.

  • PDF

Feeding Behavior of Lycorma delicatula (Hemiptera: Fulgoridae) and Response on Feeding Stimulants of Some Plants (식물에 대한 꽃매미의 섭식행동과 섭식자극)

  • Lee, Jeong-Eun;Moon, Sang-Rae;Ahn, Hee-Geun;Cho, Sun-Ran;Yang, Jeong-Oh;Yoon, Chang-Mann;Kim, Gil-Hah
    • Korean journal of applied entomology
    • /
    • v.48 no.4
    • /
    • pp.467-477
    • /
    • 2009
  • Host preference was tested on the 7 species plants against ggot-mae-mi, Lycorma delicatula (Hemiptera: Fulgoridae). This insect highly preferred Ailanthus altissima and Vitis vinifera however, didn't choose the other plants preferentially. Both nymphs and adults lived longest in A. altissima and V. vinifera but lived in short and low ecdysis rate against other plants and 3 species fruits. By analyzing the phloem-feeding behavior using EPG, L. delicatula was showed the short time in non-probing phase and it also exhibit the longest feeding time in A. altissima and V. vinifera, but other plants did not feed the phloem at all. In sugar contents analysis, A. altissima existed high sucrose proportion and followed by fructose>glucose, V. vinifera was analyzed by an order of glucose> fructose>maltose>sucrose>rhamnose, Malus pumila was as glucose> fructose, Pyrus calleryana was as glucose>unkown>fructose, Hibiscus syriacus was as sucrose>glucose. Nymphs and adults of L. delicatula lived longest in 5% sucrose solution, and next is in 5% fructose solution. However, they lived short in other sugar solutions. L. delicatula nymph and adult according to the combination of sugar proportion found in original plants lived longer in sugar combination solution of A. altissima and those of V. vinifera was next. Analyzed original sugar proportion from M. pumila, P. calleryana, H. syriacus respectively, L. delicatula lived short period comparing to the A. altissima, V. vinifera. This result was judged that sugar contents affected on choosing the host plants.

Effect of Hypoxia on Carbohydrate Metabolism in Barley Seedlings (저산소 조건이 보리 유묘의 탄수화물대사에 미치는 영향)

  • Choi Heh Ran;Park Myoung Ryoul;Kim Jung Gon;Namkoong Seung Bak;Choi Kyeong-Gu;Yun Song Joong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.3
    • /
    • pp.170-174
    • /
    • 2005
  • Barley plants growing in the wet paddy field easily encounter suboptimal oxygen concentration in the rhizosphere that causes molecular oxygen deficiency in root cells. The capacity of root cells to utilize energy sources is known to be positively related to resistance to hypoxia stress. This study was conducted to investigate effects of hypoxia on enzymes involved in the starch and sucrose metabolism. Barley seedlings at the third leaf stage were subjected to hypoxia (1 ppm dissolved oxygen) by purging the culture solution with nitrogen gas for up to seven days. The protein content was slightly decreased by hypoxia for 7 days. $\alpha-Amylase$ activities increased significantly in the root but not in the shoot after 3 to 7 days of hypoxia. $\beta-Amylase$ activities were not affected significantly in both tissues. Additionally, sucrose synthase activities were affected little in both tissues by 7 days of hypoxia. The results indicate that root cells activate break­down of polysaccharide reserves in response to an acute hypoxia to supply energy sources for fermentative glycolysis and cell wall fortification.

Cryopreservation of in Vitro Grown Shoot Tips of Sweet Potato (Ipomoea batatas L.) by the Encapsulation-Vitrification Method

  • Yi, JungYoon;Lee, GiAn;Lee, YoungYi;Gwag, JaeGyun;Son, EunHo;Park, HongJae
    • Korean Journal of Plant Resources
    • /
    • v.29 no.6
    • /
    • pp.635-641
    • /
    • 2016
  • Sweet potato (Ipomoea batatas L.) shoot tips grown in vitro were successfully cryopreserved by encapsulation-vitrification. Encapsulated explants are very easily manipulated, due to the relatively large size of the alginate beads, and a large number of samples can be treated simultaneously. In this study, the effects of sucrose preculture, cryoprotectant preculture, and post-warm recovery media on regrowth, following liquid nitrogen (LN) exposure, were investigated to establish an efficient encapsulation-vitrification protocol for sweet potato. Shoot tips of plants grown in vitro were precultured in 0.3 M sucrose for 2 d before encapsulation. Encapsulated shoot tips were pre-incubated in liquid MS (Murashige and Skoog) medium containing 0.5 M sucrose for 16 h, before preculturing in sucrose-enriched medium (0.7 M sucrose) for 8 h. Shoot tips were osmoprotected with 35% plant vitrification solution 3 (PVS3) for 3 h, before being dehydrated with PVS3 for 2 h at $25^{\circ}C$. The encapsulated and dehydrated shoot tips were transferred to 2 mL cryotubes, suspended in 0.5 mL PVS3, and plunged directly into liquid N. High levels of shoot formation were obtained for the cv. Yeulmi (65.7%) and Yeonwhangmi (80.3%). The regrowth rates of cryopreserved samples in Yeulmi (78.9%) and Yeonwhangmi (91.3%), following culture on ammonium-free MS medium for 5 d, were much higher than those cultured on standard MS medium (65.7% and 80.3%, respectively). This encapsulation-vitrification is a promising method for the long-term preservation of sweet potato.