• Title/Summary/Keyword: successive quadratic programming algorithm

Search Result 3, Processing Time 0.017 seconds

A SUCCESSIVE QUADRATIC PROGRAMMING ALGORITHM FOR SDP RELAXATION OF THE BINARY QUADRATIC PROGRAMMING

  • MU XUEWEN;LID SANYANG;ZHANG YALING
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.837-849
    • /
    • 2005
  • In this paper, we obtain a successive quadratic programming algorithm for solving the semidefinite programming (SDP) relaxation of the binary quadratic programming. Combining with a randomized method of Goemans and Williamson, it provides an efficient approximation for the binary quadratic programming. Furthermore, its convergence result is given. At last, We report some numerical examples to compare our method with the interior-point method on Maxcut problem.

Neural model predictive control for nonlinear chemical processes (비선형 화학공정의 신경망 모델예측제어)

  • 송정준;박선원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.490-495
    • /
    • 1992
  • A neural model predictive control strategy combining a neural network for plant identification and a nonlinear programming algorithm for solving nonlinear control problems is proposed. A constrained nonlinear optimization approach using successive quadratic programming cooperates with neural identification network is used to generate the optimum control law for the complicate continuous/batch chemical reactor systems that have inherent nonlinear dynamics. Based on our approach, we developed a neural model predictive controller(NMPC) which shows excellent performances on nonlinear, model-plant mismatch cases of chemical reactor systems.

  • PDF

Neural Model Predictive Control for Nonlinear Chemical Processes

  • Song, Jeong-Jun;Park, Sunwon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.899-902
    • /
    • 1993
  • A neural model predictive control strategy combining a neural network for plant identification and a nonlinear programming algorithm for solving nonlinear control problems is proposed. A constrained nonlinear optimization approach using successive quadratic programming combined with neural identification network is used to generate the optimum control law for complex continuous chemical reactor systems that have inherent nonlinear dynamics. The neural model predictive controller (MNPC) shows good performances and robustness. To whom all correspondence should be addressed.

  • PDF