• 제목/요약/키워드: successive cancellation

검색결과 156건 처리시간 0.022초

8 Antenna Polar Switching Up-Down Relay Networks

  • Li, Jun;Lee, Moon-Ho;Yan, Yier;Peng, Bu Shi;Hwang, Gun-Joon
    • Journal of electromagnetic engineering and science
    • /
    • 제11권4호
    • /
    • pp.239-249
    • /
    • 2011
  • In this paper, we propose a reliable $8{\times}8$ up-down switching polar relay code based on 3GPP LTE standard, motivated by 3GPP LTE down link, which is 30 bps/Hz for $8{\times}8$ MIMO antennas, and by Arikan's channel polarization for the frequency selective fading (FSF) channels with the generator matrix $Q_8$. In this scheme, a polar encoder and OFDM modulator are implemented sequentially at both the source node and relay nodes, the time reversion and complex conjugation operations are separately implemented at each relay node, and the successive interference cancellation (SIC) decoder, together with the cyclic prefix (CP) removal, is performed at the destination node. Use of the scheme shows that decoding at the relay without any delay is not required, which results in a lower complexity. The numerical result shows that the system coded by polar codes has better performance than currently used designs.

Generalized Quadrature Spatial Modulation Scheme Using Antenna Grouping

  • Castillo-Soria, Francisco Ruben;Cortez-Gonzalez, Joaquin;Ramirez-Gutierrez, Raymundo;Maciel-Barboza, Fermin Marcelo;Soriano-Equigua, Leonel
    • ETRI Journal
    • /
    • 제39권5호
    • /
    • pp.707-717
    • /
    • 2017
  • This paper presents a novel generalized quadrature spatial modulation (GQSM) transmission scheme using antenna grouping. The proposed GQSM scheme combines QSM and conventional spatial multiplexing (SMux) techniques in order to improve the spectral efficiency (SE) of the system. Analytical and simulation results show that the proposed transmission scheme has minimal losses in terms of the average bit error probability along with the advantage of an increased SE compared with previous SM and QSM schemes. For the case studies, this advantage represents a reduction of up to 81% in terms of the number of required transmit antennas compared with QSM. In addition, a detection architecture based on the ordered successive interference cancellation scheme and the QR decomposition is presented. The proposed QRD-M adaptive algorithm showed a near-maximum-likelihood performance with a complexity reduction of approximately 90%.

An Efficient Soft-Output MIMO Detection Method Based on a Multiple-Channel-Ordering Technique

  • Im, Tae-Ho;Park, In-Soo;Yoo, Hyun-Jong;Yu, Sung-Wook;Cho, Yong-Soo
    • ETRI Journal
    • /
    • 제33권5호
    • /
    • pp.661-669
    • /
    • 2011
  • In this paper, we propose an efficient soft-output signal detection method for spatially multiplexed multiple-input multiple-output (MIMO) systems. The proposed method is based on the ordered successive interference cancellation (OSIC) algorithm, but it significantly improves the performance of the original OSIC algorithm by solving the error propagation problem. The proposed method combines this enhanced OSIC algorithm with a multiple-channel-ordering technique in a very efficient way. As a result, the log likelihood ratio values can be computed by using a very small set of candidate symbol vectors. The proposed method has been synthesized with a 0.13-${\mu}m$ CMOS technology for a $4{\times}4$ 16-QAM MIMO system. The simulation and implementation results show that the proposed detector provides a very good solution in terms of performance and hardware complexity.

CDMA 시스템에서 그룹분리를 이용한 순차적 간섭 제거기에 관한 연구 (A study on the SIC of using group separation in CDMA system)

  • 최병구;이영철;염순진;박용완
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1999년도 추계종합학술대회
    • /
    • pp.130-134
    • /
    • 1999
  • 본 논문에서는 CDMA 시스템에서 다중 사용자 검출을 위해 수신신호를 나누는 개념과 순차적 간섭 제거기를 조합한 새로운 간섭 제거기를 제안한다. 본 간섭 제거기에서 수신신호는 큰 신호 성분들의 그룹, 작은 신호 성분들의 그룹으로 나눠지며 각 그룹의 신호들은 재 확산되어 각각 수신신호에서 제거되고 그 결과치는 원하는 신호 검출을 위해 각각 위, 아랫단 순차적 간섭 제거기의 입력 신호로 이용된다. 컴퓨터 시뮬레이션 및 구조분석을 통해서 향상된 순차적 간섭 제거기가 비트 오율과 복잡성의 면에서 순차적 간섭 제거기의 성능을 유지시키는 동시에 순차적 간섭 제거기의 지연시간에 대한 단점을 향상시킴을 보여준다.

  • PDF

Deep Learning-Based Modulation Detection for NOMA Systems

  • Xie, Wenwu;Xiao, Jian;Yang, Jinxia;Wang, Ji;Peng, Xin;Yu, Chao;Zhu, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권2호
    • /
    • pp.658-672
    • /
    • 2021
  • Since the signal with strong power need be demodulated first for successive interference cancellation (SIC) receiver in non-orthogonal multiple access (NOMA) systems, the base station (BS) need inform the near user terminal (UT), which has allocated higher power, of the far UT's modulation mode. To avoid unnecessary signaling overhead of control channel, a blind detection algorithm of NOMA signal modulation mode is designed in this paper. Taking the joint constellation density diagrams of NOMA signal as the detection features, the deep residual network is built for classification, so as to detect the modulation mode of NOMA signal. In view of the fact that the joint constellation diagrams are easily polluted by high intensity noise and lose their real distribution pattern, the wavelet denoising method is adopted to improve the quality of constellations. The simulation results represent that the proposed algorithm can achieve satisfactory detection accuracy in NOMA systems. In addition, the factors affecting the recognition performance are also verified and analyzed.

비간섭 비직교 다중접속: 삼중 2PAM의 최약 채널 사용자의 BER 향상 관점에서 (Non-interfering Non-orthogonal Multiple Access: With Application to Improving BER of Weakest Channel User in 3-User 2PAM)

  • 정규혁
    • 한국전자통신학회논문지
    • /
    • 제16권4호
    • /
    • pp.585-590
    • /
    • 2021
  • 본 논문은 수용 가능한 강 채널 사용자들의 BER 손실로, 최약 채널 사용자의 BER 성능을 향상하기 위하여, 3명의 사용자의 비간섭 비직교 다중 접속을 제안한다. 먼저, 3명의 사용자의 비간섭 비직교 다중 접속을 설계하고, 제안된 기법의 BER의 폐쇄형 표현 식을 유도한다. 다음, 수치적 결과를 통해, 적은 강 채널 사용자들의 BER 손실로, 최약 채널 사용자의 BER 성능이 크게 향상되는 것을 입증한다. 결론적으로, 비간섭 2PAM은 5G 시스템의 비직교 다중접속에서 고려될 수도 있다.

Analysis on Achievable Data Rate of Asymmetric 2PAM for NOMA

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • 제9권4호
    • /
    • pp.34-41
    • /
    • 2020
  • Nowadays, the advanced smart convergences of the artificial intelligence (AI) and the internet of things (IoT) have been more and more important, in the fifth generation (5G) and beyond 5G (B5G) mobile communication. In 5G and B5G mobile networks, non-orthogonal multiple access (NOMA) has been extensively investigated as one of the most promising multiple access (MA) technologies. In this paper, we investigate the achievable data rate for the asymmetric binary pulse amplitude modulation (2PAM), in non-orthogonal multiple access (NOMA). First, we derive the closed-form expression for the achievable data rate of the asymmetric 2PAM NOMA. Then it is shown that the achievable data rate of the asymmetric 2PAM NOMA reduces for the stronger channel user over the entire range of power allocation, whereas the achievable data rate of the asymmetric 2PAM NOMA increases for the weaker channel user improves over the power allocation range less than 50%. We also show that the sum rate of the asymmetric 2PAM NOMA is larger than that of the conventional standard 2PAM NOMA, over the power allocation range larger than 25%. In result, the asymmetric 2PAM could be a promising modulation scheme for NOMA of 5G systems, with the proper power allocation.

Achievable Sum Rate of NOMA with Negatively-Correlated Information Sources

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • 제10권1호
    • /
    • pp.75-81
    • /
    • 2021
  • As the number of connected smart devices and applications increases explosively, the existing orthogonal multiple access (OMA) techniques have become insufficient to accommodate mobile traffic, such as artificial intelligence (AI) and the internet of things (IoT). Fortunately, non-orthogonal multiple access (NOMA) in the fifth generation (5G) mobile networks has been regarded as a promising solution, owing to increased spectral efficiency and massive connectivity. In this paper, we investigate the achievable data rate for non-orthogonal multiple access (NOMA) with negatively-correlated information sources (CIS). For this, based on the linear transformation of independent random variables (RV), we derive the closed-form expressions for the achievable data rates of NOMA with negatively-CIS. Then it is shown that the achievable data rate of the negatively-CIS NOMA increases for the stronger channel user, whereas the achievable data rate of the negatively-CIS NOMA decreases for the weaker channel user, compared to that of the positively-CIS NOMA for the stronger or weaker channel users, respectively. We also show that the sum rate of the negatively-CIS NOMA is larger than that of the positively-CIS NOMA. As a result, the negatively-CIS could be more efficient than the positively-CIS, when we transmit CIS over 5G NOMA networks.

Design and Implementation of True Random Noise Radar System

  • Min, Woo-Ki;Kim, Cheol-Hoo;Lukin, Constantin A.;Kim, Jeong-Phill
    • Journal of electromagnetic engineering and science
    • /
    • 제9권3호
    • /
    • pp.130-140
    • /
    • 2009
  • The design theory and experimental results of a true random noise radar system are presented in this paper. Target range information can be extracted precisely by correlation processing between the delayed reference and the signal received from a target, and the velocity information by the Doppler processing with successive correlation data. A K-band noise radar system was designed using random FM noise signal, and the characteristics of the fabricated system were examined with laboratory and outdoor experiments. A C-band random FM noise signal was generated by applying a low-frequency white Gaussian noise source to VCO(Voltage Controlled Oscillator), and a K-band Tx noise signal with 100 MHz bandwidth was obtained by using a following frequency multiplier. Two modified wave-guide horn arrays were designed and fabricated, and used for the Tx and Rx antennas. The required amount of Tx/Rx isolation was attained by using a coupling cancellation circuit as well as keeping them apart with predetermined spacing. A double down-conversion scheme was used in the Rx and reference channels, respectively, for easy post processing such as correlation and Doppler processing. The implemented noise radar performance was examined with a moving bicycle and a very high-speed target with a velocity of 150 m/s. The results extracted by the Matlab simulation using the logging data were found to be in a reasonable agreement with the expected results.

Joint Space-time Coding and Power Domain Non-orthogonal Multiple Access for Future Wireless System

  • Xu, Jin;Ding, Hanqing;Yu, Zeqi;Zhang, Zhe;Liu, Weihua;Chen, Xueyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권1호
    • /
    • pp.93-113
    • /
    • 2020
  • According to information theory, non-orthogonal transmission can achieve the multiple-user channel capacity with an onion-peeling like successive interference cancellation (SIC) based detection followed by a capacity approaching channel code. However, in multiple antenna system, due to the unideal characteristic of the SIC detector, the residual interference propagated to the next detection stage will significantly degrade the detection performance of spatial data layers. To overcome this problem, we proposed a modified power-domain non-orthogonal multiple access (P-NOMA) scheme joint designed with space-time coding for multiple input multiple output (MIMO) NOMA system. First, with proper power allocation for each user, inter-user signals can be separated from each other for NOMA detection. Second, a well-designed quasi-orthogonal space-time block code (QO-STBC) was employed to facilitate the SIC-based MIMO detection of spatial data layers within each user. Last, we proposed an optimization algorithm to assign channel coding rates to balance the bit error rate (BER) performance of those spatial data layers for each user. Link-level performance simulation results demonstrate that the proposed time-space-power domain joint transmission scheme performs better than the traditional P-NOMA scheme. Furthermore, the proposed algorithm is of low complexity and easy to implement.