• Title/Summary/Keyword: success intelligence

Search Result 188, Processing Time 0.024 seconds

Implementation of Camera-Based Autonomous Driving Vehicle for Indoor Delivery using SLAM (SLAM을 이용한 카메라 기반의 실내 배송용 자율주행 차량 구현)

  • Kim, Yu-Jung;Kang, Jun-Woo;Yoon, Jung-Bin;Lee, Yu-Bin;Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.687-694
    • /
    • 2022
  • In this paper, we proposed an autonomous vehicle platform that delivers goods to a designated destination based on the SLAM (Simultaneous Localization and Mapping) map generated indoors by applying the Visual SLAM technology. To generate a SLAM map indoors, a depth camera for SLAM map generation was installed on the top of a small autonomous vehicle platform, and a tracking camera was installed for accurate location estimation in the SLAM map. In addition, a convolutional neural network (CNN) was used to recognize the label of the destination, and the driving algorithm was applied to accurately arrive at the destination. A prototype of an indoor delivery autonomous vehicle was manufactured, and the accuracy of the SLAM map was verified and a destination label recognition experiment was performed through CNN. As a result, the suitability of the autonomous driving vehicle implemented by increasing the label recognition success rate for indoor delivery purposes was verified.

Jumpstarting the Digital Revolution: Exploring Smart City Architecture and Themes

  • Maha Alqahtani;Kholod M. Alqahtani
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.110-122
    • /
    • 2023
  • Over the last few decades, various innovative technologies have emerged that have significantly contributed to making life easier for humans. Various information and communication technologies (ITCs) have emerged as a result of the global technological revolution, including big data, IoT, 4G and 5G networks, cloud computing, mobile computing, and artificial intelligence. These technologies have been adopted in urban planning and development, which gave rise to the concept of smart cities in the 1990s. A smart city is a type of city that uses ITCs to exchange and share information to enhance the quality of services for its citizens. With the global population increasing at unprecedented levels, cities are overwhelmed with a myriad of challenges, such as the energy crisis, environmental pollution, sanitation and sewage challenges, and water quality issues, and therefore, have become a convergence point of economic, social, and environmental risks. The concept of a smart city is a multidisciplinary, unified approach that has been adopted by governments and municipalities worldwide to overcome these challenges. Though challenging, this transformation is essential for cities with differing technological and social features, which all have the potential to determine the success or failure of the digital transformation of cities into smart cities. In recent years, researchers, businesses, and the government have all turned their attention to the emerging field of smart cities. Accordingly, this paper aims to represent a thorough understanding of the movement toward smart cities. The key themes identified are smart city definitions and concepts, smart city dimensions, and smart city architecture of different layers. Furthermore, this article discusses the challenges and some examples of smart cities.

Students' Performance Prediction in Higher Education Using Multi-Agent Framework Based Distributed Data Mining Approach: A Review

  • M.Nazir;A.Noraziah;M.Rahmah
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.135-146
    • /
    • 2023
  • An effective educational program warrants the inclusion of an innovative construction which enhances the higher education efficacy in such a way that accelerates the achievement of desired results and reduces the risk of failures. Educational Decision Support System (EDSS) has currently been a hot topic in educational systems, facilitating the pupil result monitoring and evaluation to be performed during their development. Insufficient information systems encounter trouble and hurdles in making the sufficient advantage from EDSS owing to the deficit of accuracy, incorrect analysis study of the characteristic, and inadequate database. DMTs (Data Mining Techniques) provide helpful tools in finding the models or forms of data and are extremely useful in the decision-making process. Several researchers have participated in the research involving distributed data mining with multi-agent technology. The rapid growth of network technology and IT use has led to the widespread use of distributed databases. This article explains the available data mining technology and the distributed data mining system framework. Distributed Data Mining approach is utilized for this work so that a classifier capable of predicting the success of students in the economic domain can be constructed. This research also discusses the Intelligent Knowledge Base Distributed Data Mining framework to assess the performance of the students through a mid-term exam and final-term exam employing Multi-agent system-based educational mining techniques. Using single and ensemble-based classifiers, this study intends to investigate the factors that influence student performance in higher education and construct a classification model that can predict academic achievement. We also discussed the importance of multi-agent systems and comparative machine learning approaches in EDSS development.

The Impacts of AI-enabled Search Services on Local Economy (AI 기반 장소 검색 서비스가 지역 경제에 미치는 영향에 대한 실증 연구)

  • Heejin Joo;Jeongmin Kim;Jeemahn Shin;Keongtae Kim;Gunwoong Lee
    • Information Systems Review
    • /
    • v.23 no.3
    • /
    • pp.77-96
    • /
    • 2021
  • This research investigates the pivotal role of AI-enabled technologies in vitalizing the local economy. Collaborating with a leading search engine company, we examine the direct and indirect of an AI-based location search service on the success of sampled 7,035 local restaurants in Gangnam area in Seoul. We find that increased use of AI-enabled search and recommendation services significantly improved the selections of previously less-discovered or less-popular restaurants by users, and it also enhanced the stores' overall conversion rates. The main research findings have contributions to extant literature in theorizing the value of AI applications in local economy and have managerial implications for search businesses and local stores by recommending strategic use of AI applications in their businesses that are effective in highly competitive markets.

Fine-tuning Method to Improve Sentiment Classification Perfoimance of Review Data (리뷰 데이터 감성 분류 성능 향상을 위한 Fine-tuning 방법)

  • Jung II Park;Myimg Jin Lim;Pan Koo Kim
    • Smart Media Journal
    • /
    • v.13 no.6
    • /
    • pp.44-53
    • /
    • 2024
  • Companies in modern society are increasingly recognizing sentiment classification as a crucial task, emphasizing the importance of accurately understanding consumer opinions opinions across various platforms such as social media, product reviews, and customer feedback for competitive success. Extensive research is being conducted on sentiment classification as it helps improve products or services by identifying the diverse opinions and emotions of consumers. In sentiment classification, fine-tuning with large-scale datasets and pre-trained language models is essential for enhancing performance. Recent advancements in artificial intelligence have led to high-performing sentiment classification models, with the ELECTRA model standing out due to its efficient learning methods and minimal computing resource requirements. Therefore, this paper proposes a method to enhance sentiment classification performance through efficient fine-tuning of various datasets using the KoELECTRA model, specifically trained for Korean.

A Comparative Study of Deep Learning Techniques for Alzheimer's disease Detection in Medical Radiography

  • Amal Alshahrani;Jenan Mustafa;Manar Almatrafi;Layan Albaqami;Raneem Aljabri;Shahad Almuntashri
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.53-63
    • /
    • 2024
  • Alzheimer's disease is a brain disorder that worsens over time and affects millions of people around the world. It leads to a gradual deterioration in memory, thinking ability, and behavioral and social skills until the person loses his ability to adapt to society. Technological progress in medical imaging and the use of artificial intelligence, has provided the possibility of detecting Alzheimer's disease through medical images such as magnetic resonance imaging (MRI). However, Deep learning algorithms, especially convolutional neural networks (CNNs), have shown great success in analyzing medical images for disease diagnosis and classification. Where CNNs can recognize patterns and objects from images, which makes them ideally suited for this study. In this paper, we proposed to compare the performances of Alzheimer's disease detection by using two deep learning methods: You Only Look Once (YOLO), a CNN-enabled object recognition algorithm, and Visual Geometry Group (VGG16) which is a type of deep convolutional neural network primarily used for image classification. We will compare our results using these modern models Instead of using CNN only like the previous research. In addition, the results showed different levels of accuracy for the various versions of YOLO and the VGG16 model. YOLO v5 reached 56.4% accuracy at 50 epochs and 61.5% accuracy at 100 epochs. YOLO v8, which is for classification, reached 84% accuracy overall at 100 epochs. YOLO v9, which is for object detection overall accuracy of 84.6%. The VGG16 model reached 99% accuracy for training after 25 epochs but only 78% accuracy for testing. Hence, the best model overall is YOLO v9, with the highest overall accuracy of 86.1%.

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.

A Study on Analyzing Sentiments on Movie Reviews by Multi-Level Sentiment Classifier (영화 리뷰 감성분석을 위한 텍스트 마이닝 기반 감성 분류기 구축)

  • Kim, Yuyoung;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.71-89
    • /
    • 2016
  • Sentiment analysis is used for identifying emotions or sentiments embedded in the user generated data such as customer reviews from blogs, social network services, and so on. Various research fields such as computer science and business management can take advantage of this feature to analyze customer-generated opinions. In previous studies, the star rating of a review is regarded as the same as sentiment embedded in the text. However, it does not always correspond to the sentiment polarity. Due to this supposition, previous studies have some limitations in their accuracy. To solve this issue, the present study uses a supervised sentiment classification model to measure a more accurate sentiment polarity. This study aims to propose an advanced sentiment classifier and to discover the correlation between movie reviews and box-office success. The advanced sentiment classifier is based on two supervised machine learning techniques, the Support Vector Machines (SVM) and Feedforward Neural Network (FNN). The sentiment scores of the movie reviews are measured by the sentiment classifier and are analyzed by statistical correlations between movie reviews and box-office success. Movie reviews are collected along with a star-rate. The dataset used in this study consists of 1,258,538 reviews from 175 films gathered from Naver Movie website (movie.naver.com). The results show that the proposed sentiment classifier outperforms Naive Bayes (NB) classifier as its accuracy is about 6% higher than NB. Furthermore, the results indicate that there are positive correlations between the star-rate and the number of audiences, which can be regarded as the box-office success of a movie. The study also shows that there is the mild, positive correlation between the sentiment scores estimated by the classifier and the number of audiences. To verify the applicability of the sentiment scores, an independent sample t-test was conducted. For this, the movies were divided into two groups using the average of sentiment scores. The two groups are significantly different in terms of the star-rated scores.

A Comparative Study of Users' Behavior on Mobile Internet Service Usage according to Lifestyle (라이프스타일 유형별 모바일 인터넷 사용형태 비교 연구)

  • Choi, Hun
    • Management & Information Systems Review
    • /
    • v.30 no.1
    • /
    • pp.87-105
    • /
    • 2011
  • Although the rapid spread of mobile device like smart phone has increased, One of the main problems of systems is that they do not meet their quality requirements. Many researchers have tried to improve users' satisfaction and enhance their quality of life. The purpose of the study is to examine the moderating effect of lifestyle on the use of mobile internet service. To achieve our research purpose, we used lifestyle, IS success model and quality of life as the theoretical background. Based on the research model, we conducted survey and empirically analyzed the data. We classified user types according to lifestyle as a moderating variable. The results show that users' lifestyle can classify two group: curiosity-independent group and intelligence-pursuit of advanced fashion type. The impact of information and systems quality factors of mobile internet service on user satisfaction are differentiated from these lifestyle group. This paper ends with strategical implication of the study results.

  • PDF

The Effect of Personal Creativity on Knowledge Sharing and Innovation Behavior: Focused on Retail Workers (개인 창의성이 지식공유와 혁신행동에 미치는 영향: 유통업 종사자를 중심으로)

  • LEE, Joon-Pyo;PARK, Kye-Hong
    • Journal of Distribution Science
    • /
    • v.17 no.10
    • /
    • pp.93-105
    • /
    • 2019
  • Purpose - First, empirical research will reveal how personal creativity affects the knowledge sharing and innovation behaviors of organizational members. Second, self-management competency will be verified to explain the causal relationship between independent and dependent variables as a mediating variable and to reduce the time interval. Research design, data, and methodology - There are two major research models. First, personal creativity (professionalism, emotional intelligence, internal motivation) has a positive impact on knowledge sharing (creation of knowledge, organization of knowledge, use of knowledge) and innovation behavior (deriving ideas, implementing ideas, promoting ideas). Second, self-management competency (intellectual capacity, emotional capacity, personality capacity) plays a mediating role. In addition to descriptive statistics and correlation analysis, Cronbach's α was calculated for 259 workers in the retail industry. In addition, confirmatory factor analysis was performed using the AMOS 24.0 program, and the influence on the measurement model was analyzed to verify the structural equation model. Results - First, personal creativity had a positive effect on knowledge sharing and innovation behavior. In other words, it was confirmed that the decision-making process accompanied by individual creativity can create an atmosphere of knowledge sharing and continue to innovate. Second, personal creativity had a positive effect on self-management competency, and self-management competency had a positive effect on knowledge sharing and innovation behavior. Third, self-management competency was found to partially mediate the influence of personal creativity on knowledge sharing and innovation behavior. Conclusions - First, it is important for managers to recognize the value of creative talents who can be a fundamental source of organizational success and competitive advantage, and to attract talented people. Second, managers should be able to develop decision-making processes to develop potential creativity and encourage creative ideas, opinions, or solutions when organizing the work environment of their members. Third, managers should promote the sharing and integration of new knowledge that underlies the creative views and attitudes of teams and organizational members. Unlike previous studies, which emphasize the role of the work environment in which creative behaviors are promoted, this study shows that creativity of individual members, itself, is an important determinant of knowledge sharing and innovation behavior.