• Title/Summary/Keyword: subway construction

Search Result 413, Processing Time 0.023 seconds

Research on Efficient Applicability Through Review on Standard for Selection of Construction Method for Railway Underground Crossing Transit (철도지하횡단 통과 공법 선정기준에 관한 검토를 통해 효율적인 적용성에 대한 연구)

  • Hwang, Young-Ho;Shon, Jung-Chul;Baek, Jong-Myeong
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.595-600
    • /
    • 2007
  • Greater expansion and more frequent operation of the railroad transportation system anticipated due to its characteristics including low cost, safety and mass transportation. Recently, effects on the railway structures due to expansion of newly constructed road, construction of subway, city gas pipeline, communication network, electric power network and construction of other railway underground crossing in accordance with urban planning and organization has influenced safe operation of trains. Accordingly, standard for selection of construction method that will enable construction of more economical and rational subway underground crossing structures by preventing problems occurring at the time of above construction works and accidents in safe operation of trains due to construction in advance is definitively necessary. Although there are numerous construction methods that can be applied at the time of construction of railway underground crossing, there are much difficulties in selection of appropriate construction method that considers characteristics of each construction method on non-excavation type construction method, train operation plan of number of operational routes and on-site circumstances. Therefore, this research aims to present rational standard for selection of construction method for such, and standard for slowdown speed and interception of train when passing the areas of slowdown in sectors under construction.

  • PDF

Limit analysis of a shallow subway tunnel with staged construction

  • Yu, Shengbing
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1039-1046
    • /
    • 2018
  • This paper presents a limit analysis of the series of construction stages of shallow tunneling method by investigating their respective safety factors and failure mechanisms. A case study for one particular cross-section of Beijing Subway Line 7 is undertaken, with a focus on the effects of multiple soil layers and construction sequencing of dual tunnels. Results show that using the step-excavation technique can render a higher safety factor for the excavation of a tunnel compared to the entire cross-section being excavated all at once. The failure mechanisms for each different construction stage are discussed and corresponding key locations are suggested to monitor the safety during tunneling. Simultaneous excavation of dual tunnels in the same cross-section should be expressly avoided considering their potential negative interactions. The normal and shear forces as well as bending moment of the primary lining and locking anchor pipe are found to reach their maximum value at Stage 6, before closure of the primary lining. Designing these struts should consider the effects of different construction stages of shallow tunneling method.

A Study on the Evacuation Time of the Subway Station (지하역사 승강장 피난시간 분석 연구)

  • Shin, Min-Jung;Kim, Jin-Ho;Kim, Dan-Hee
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.214-220
    • /
    • 2011
  • As the number of subway user increases, not only interests in safety increase but also interests in evacuation for a conflagration expand after 'Daegu Subway Fire Disaster' took place. It is necessary to revise the standard of evacuation time and guidelines to guarantee safety of station and platform considering changes in subway environments caused by construction of the deeply underground subway station. Hence this study investigates the current status of the evacuation time of respective station through a site investigation and the results of this study may be utilized as a basic material to calculate an appropriate evacuation time.

  • PDF

Measurements of Carcinogenic Air Pollutants in Seoul Metropolitan Subway Stations (서울시 일부 지하철역내 대기오염물질에 대한 조사연구)

  • 김윤신;신응배;김신도;김동술;전준민
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.1
    • /
    • pp.19-27
    • /
    • 1994
  • This paper reports an investigation of concentrations major carcinogenic indoor air pollutants for radon, formaldehyde, and asbestos in the 83 subway stations in the Seoul metropolitan area during November 1991~September 1992. Mean concentrations of indoor pollutants in Seoul subway stations surveyed were 0.23 ppb for formaldehyde, 1.12 pCi/l for radon, and 0.008 fiber/cc for asbestos. Mean formaldehyde concentrations in 83 subway stations were below the U.S. EPA formaldehyde standard (100 ppb), whereas mean concentrations of radon and asbestos in 2% and 22% of total sampled subway stations exceeded the U.S. radon (4 pCi/l) and asbestos (0.01 fiber/cc) standand, respectively. It is likely that possible sources for radon and asbestos are radon intrusion from the leaking underground water and construction materials, respectively.

  • PDF

Experimental and Numerical Analyses of Unsteady Tunnel Flow in Subway Equiped with Platform Screen Door System (스크린도어가 설치된 지하철에서 열차운행에 의한 비정상유동의 실험 및 수치적 해석)

  • Kim Jung-Yup;Kim Kwang-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.103-111
    • /
    • 2006
  • To optimize the ventilation and smoke control systems in subway equipped with platform screen door, the technology to analyze the unsteady tunnel flow caused by running of train should be developed. The development of model experiment and numerical analysis technique with relation to unsteady flow of subway were presented. The pressure and air velocity changes in 1/20-scaling experiment unit were measured and results were comparied to those of 3-D unsteady numerical analysis applied with sharp interface method. The experimental and numerical results were quantitatively similar and it would be reasonable to apply sharp interface method to analyze the unsteady flow in subway equipped with platform screen door.

Analysis of spatial change for the Subway Construction using Satellite image (위성영상을 이용한 지하철건설전후의 공간변화분석)

  • Han, Gi-Bong;Gang, In-Jun;Gwak, Jae-Ha;Seok, Cheol-Ho
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.107-110
    • /
    • 2007
  • There it has been progressed study about the city of land use and change detection in different period. The aim of the study is to find the differences in spatial change for subway construction lines using Landsat TM and SPOT image. The result of study to use judge the data in subway role about the city growth. In the recently, it will be expected to use important basis data in development of the city.

  • PDF

Feasibility study on waste heat utilization system in subway (지하철배열 이용 시스템의 경제성 평가)

  • Lee, Chul-Goo;Kim, Jong-Dae;Im, Tae-Soon;Pang, Seun-Gki;Ham, Heung-Don
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.1
    • /
    • pp.59-64
    • /
    • 2011
  • Feasibility study on energy saving system by utilizing exhausted heat from subway, which is one of the unused energy, was carried out. General heat source system using absorption chiller-heater was used for comparing to the energy saving system, and payback period method using initial cost and running cost of two systems, was used to perform economic estimation. Payback period was about ten years, and this period might be shortened if nation's economic support enact.

1Monitoring system for the subway structures using pre-strain controllable FBG sensors (프리스트레인 가변형 광섬유센서를 이용한 지하철 구조 모니터링시스템)

  • Kim, Ki-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.700-709
    • /
    • 2009
  • FBG sensor system is applied to the concrete lining structure in Taegu subway. Near the structure, the power cable tunnel construction started. We wanted to measure the deformation of the structure due to the construction by the FBG sensor. The applied sensor has the gauge length of 1 meter to overcome the inhomogeneity of the concrete material with enough length. In order to fix tightly to the structure, the partially stripped parts of the sensor glued to the package and slip phenomenon between fiber and acrylate jacket was prevented. Prestrain of the sensor was imposed by controlling the two fixed points with bolts and nuts in order to measure compressive strain as well as tensile strain. The behavior of subway lining structure could be monitored very well.

  • PDF

The railway line planning pass through the center of Seoul in the railway line of Incheon International Airport Railway (인천국제공항철도 노선에서 서울도심통과 구간의 노선 선형계획)

  • Shin Tae-Gyun;Kim In-Yong;Jung Chan-Mun;Kim Yong-Man
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1138-1143
    • /
    • 2004
  • We as a civil investment enterprise have been constructing In-cheon International Airport Railway which is a transportation means to approach In-cheon International Airport. In this alignment. a section between the Seoul station and Ka-joa follows the existing Yong-san line at the center of Seoul city and traverses Seoul subway 2,5,6 lines. So we planned that the alignment would have the shallowest depth to lie under Kyung-eui line and above the airport railroad. The alignment is planned to construct an open-box structure only 3.6m apart from the subway line 5 tunnel structure and construct the open-box structure 0.7m apart from the subway line 2 box structure. In the line planning, we investigated both the security of the existing subway structures during and after construction and the stability and workability between newly structured tunnel structures with three dimensions numerical analysis methods. Also we raised the reliability of design verification which was achieved by specialty society's review on the planned construction method.

  • PDF