• Title/Summary/Keyword: subsurface contamination

Search Result 94, Processing Time 0.024 seconds

Detection of fluorescence from soils contaminated with monoaromatic hydrocarbons (유류 오염 토양에서의 단일방향족 탄화수소 농도 측정을 위한 자외선 형광 분석에 관한 연구)

  • 김우진;박재우;이주인
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.35-44
    • /
    • 2002
  • In order to determine the contamination of the aromatic hydrocarbons in soil, a fiber-optic sensing technique with fluorescence detector has been proposed. Previous researches have shown that the optimal condition for detecting benzene, toluene, ethylbenzene, xylene (BTEX) was 260 nm /290 nm (excitation/emission wavelength). However, broader fluorescence spectra of BTEX-polluted soil sample ranging from 300 nm to 600 nm were observed. Additionally, the intensity of fluorescence increased with increasing BTEX concentration, which was conspicuous in the fine-particle soil, The overall results indicated that the suggested technique could be useful for in-situ monitoring system for subsurface oil-storage tank.

Application of In Situ Measurement for Site Remediation and Final Status Survey of Decommissioning KRR Site

  • Hong, Sang Bum;Nam, Jong Soo;Choi, Yong Suk;Seo, Bum Kyoung;Moon, Jei Kwon
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.173-178
    • /
    • 2016
  • Background: In situ gamma spectrometry has been used to measure environmental radiation, assumptions are usually made about the depth distribution of the radionuclides of interest in the soil. The main limitation of in situ gamma spectrometry lies in determining the depth distribution of radionuclides. The objective of this study is to develop a method for subsurface characterization by in situ measurement. Materials and Methods: The peak to valley method based on the ratio of counting rate between the photoelectric peak and Compton region was applied to identify the depth distribution. The peak to valley method could be applied to establish the relation between the spectrally derived coefficients (Q) with relaxation mass per unit area (${\beta}$) for various depth distribution in soil. The in situ measurement results were verified by MCNP simulation and calculated correlation equation. In order to compare the depth distributions and contamination levels in decommissioning KRR site, in situ measurement and sampling results were compared. Results and Discussion: The in situ measurement results and MCNP simulation results show a good correlation for laboratory measurement. The simulation relationship between Q and source burial for the source layers have exponential relationship for a variety depth distributions. We applied the peak to valley method to contaminated decommissioning KRR site to determine a depth distribution and initial activity without sampling. The observed results has a good correlation, relative error between in situ measurement with sampling result is around 7% for depth distribution and 4% for initial activity. Conclusion: In this study, the vertical activity distribution and initial activity of $^{137}Cs$ could be identifying directly through in situ measurement. Therefore, the peak to valley method demonstrated good potential for assessment of the residual radioactivity for site remediation in decommissioning and contaminated site.

Applicability of Permittivity Measurement Method for Investigating the Heavy Metal Contamination of Subsurface (지반의 중금속 오염도 조사를 위한 흙의 유전상수 측정기법의 적용성 평가)

  • Oh, Myoung-Hak;Kim, Yong-Sung;Yoo, Dong-Ju;Park, Jun-Boum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.499-506
    • /
    • 2005
  • 지반오염조사에 대한 유전상수 측정기법의 적용성을 평가하기 위하여 중금속 오염도에 따른 흙의 유전특성 변화를 분석하였다. 유전상수의 실수부와 허수부 모두 체적함수비에 따른 증가경향을 나타내었으며, 특히 MHz 범위에서 유전상수 실수부는 쌍극자모멘트에 비례하기 때문에 흙의 유전상수는 체적함수비에 따른 선형적인 증가경향을 나타내었다. 중금속 용액은 50kHz 이하의 저주파영역에서 전극 분극효과에 의해 농도 증가에 따라 유전상수 실수부가 증가하는 경향을 나타내었으나, 고주파 영역에서는 이온의 수화작용에 의한 물분자의 배향분극 발현 감소로 인하여 유전상수 실수부가 감소하였다. 유전상수 허수부의 경우에는 모든 주파수 영역에서 중금속 농도 증가에 따른 전도손실에 의하여 증가하는 경향을 나타내었다. 흙과 중금속 혼합시료의 경우 함수비가 큰 시료에서는 중금속 용액 자체의 유전특성이 그대로 발현되었으나, 함수비가 작은 시료에서는 공간전하분극의 영향이 우세하여 유전상수 실수부가 10-20%정도 증가하는 경향을 나타내었다. 유전상수 허수부의 경우에는 중금속 농도 증가에 따른 뚜렷한 증가경향을 확인할 수 있었다. 본 연구의 결과에 의하면 중금속의 오염감지에 대해서는 유전상수 실수부보다는 허수부의 적용성이 높은 것으로 나타났으며, 현장에서의 정확한 오염도 평가를 위해서는 함수비에 대한 평가가 선행되어야 할 것으로 판단된다.

  • PDF

Calculation of the Dispersion Coefficient by the Dissolution Experiment of DNAPL Pool (DNAPL Pool의 용해실험에 의한 분산계수 산정)

  • 정경영;배열호;최상일
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.19-27
    • /
    • 1996
  • Nonaqueous phase liquids(NAPL) not readily dissolved in water exist as a separate fluid phase. Groundwater contamination by NAPL such as organic solvents and petroleum hydrocarbons becomes major public concerns because of their long-term persistence in the subsurFace and their ability to contaminate large volumes of wate. Dense.-than-water NAPL(DNAPL) spilled into the subsurface penetrate through the saturated zone and ultimately form DNAPL pools on the bottom of the aquifer. The dissolution of DNAPL from these pools depends on the molecular diffusion coefficient, the vertical dispersivity, the groundwater velocity, the solubility, and the pool length. In this study, the vertical transverse dispersion coefficients for simulating the dissolution of DNAPL from such pools were obtained from the dissolution experiment. Under the experimental conditions used, the vertical transverse dispersion coefficients calculated were 1.86$cm^2$/day, 2.90$cm^2$/day and 4.51$cm^2$/4ay for seepage velocities of 59.2cm/day, 94.3cm/day and 158.0cm/day, respectively. And the vertical transverse dispersivity was 0.03024cm.

  • PDF

토양내 총 NAPL과 공기접촉 NAPL의 측정을 위한 분별 NAPL 분배 추적자 기술의 개발

  • 최경민;김헌기
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.29-32
    • /
    • 2004
  • Gaseous partitioning tracer test has been used for determining the volume and spatial distribution of residual non-aqueous phase liquid (NAPL) in the unsaturated soils. In this study, an experimental method for measuring the content of gas-exposed NAPL as well as that of total NAPL in a sand during air sparging was developed. Two different gaseous phase NAPL-partitioning tracers were used; n-pentane, with very low water solubility, was used as the tracer that partitions into NAPL that is only in contact with the mobile gas, and chloroform, with fairly good water solubility, was selected for detecting total NAPL content in the sand. Helium and difluromethanewere used as the non- reactive tracer and water-partitioning tracers, respectively. Using n-decane as a model NAPL (NAPL saturation of 0.018), 25.6% of total NAPL was detected by n-pentane at the water saturation of 0.68. Oniy 9.1% of total NAPL was detected by n-pentane at the water saturation of 0.84. This result implies that the quantity of gas-exposed NAPL increased about three times when the water saturation decreased from 0.84 to 0.68. At the water saturation of 0.68, more than 90% of total NAPL was detected by chloroform while 65.8% of total NAPL was detected by chloroform at the water saturation of 0.84. Considering that the removal rate of NAPL during air sparging for NAPL-contaminated aquifer is expected to be greatly dependent upon the spatial arrangement of NAPL phase with respect to the mobile gas, this new approach may provide useful information for investigating the mass transfer process during air-driven remedial processes fer NAPL-contaminated subsurface environment.

  • PDF

Case history of electrical resistivity survey at the river for bridge design (장대교량 기초 설계를 위한 수륙혼합 전기비저항탐사 사례)

  • Chung Ho-Joon;Kim Jung-Ho;Kwon Hyoung-Seok;Ahn Hee-Yoon;Kim Ki-Seog
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2002.09a
    • /
    • pp.126-138
    • /
    • 2002
  • Designing the bridge with wider span is the present-day trends. Therefore, constructing the foundation on the suitable ground is one of the important factor for the safety of bridge. But, getting a subsurface information under the river is not easy problem. This paper shows results of electrical resistivity survey at the river. Electrical resistivity survey have revealed geoelectrical structure successfully. The result is well matched with boring and can provide useful information on the geological structure such as fault fracture zone for suitable location of foundation. It is expected that application of electrical resistivity survey at the river will be helpful in preventing modification of design due to unexpected ground condition during the construction, or water contamination and increment of costs accompanied with ground reinforcement.

  • PDF

Complex Dielectric Constant of Soil Contaminated by Landfill Leachate with Measured Frequency (매립지 침출수로 오염된 토양의 측정주파수에 따른 유전특성 변화)

  • Oh Myoung-Hak;Bang Sun-Young;Park Jun-Boum;Lee Ju-Hyung;Lee Seock-Heon;Ahn Kyu-Hong
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.1-11
    • /
    • 2004
  • To evaluate the applicability of dielectric constant measurement method on the geoenvironmental investigation of subsurface contaminated by landfill leachate, the analysis on dielectric characteristics of sand containing contaminated pore water by landfill leachate was performed. The separate real and imaginary parts of dielectric constant were investigated in the frequency range of 75kHz to 12MHz. The real part of dielectric constant increased at the lower frequency wherea the real part of dielectric constant decreased at the higher frequency as the concentration of leachate increased. These results can be explained by the frequency dependence of space charge polarization and orientation polarization. The imaginary part of dielectric constant on the contaminated sand with leachate increased with their concentration for whole frequency range. These results are caused by the increase of energy loss due to the enhancement of conduction in soil with leachate concentration. The results in this study indicate that the dielectric constant measurement method has potential in evaluating the contaminated soil and pore water by landfill leachate.

Investigation on Geochemical Characteristics of Heavy Metals in Soils in the Vicinity of Samcheonpo and Hadong Coal-Fired Power Plants in Korea (국내 삼천포와 하동 석탄 화력발전소 주변 토양 내 중금속의 지구화학적 특성 조사)

  • Song, Chang-Woo;Han, Hyeop-Jo;Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.52 no.2
    • /
    • pp.141-158
    • /
    • 2019
  • The quantity of heavy metals in agricultural surface and subsurface soils around coal-fired power plants located in Samcheonpo and Hadong, Gyeongnam Province, were determined. The analytical results for 48 and 61 soils in Samcheonpo and Hadong, respectively, showed that the concentrations of Cu, Hg, Ni, Pb, and Zn were below the warning criteria regulated by Korean Soil Conservation Act; however, Cd in 38 and 13 soils in Samcheonpo and Hadong, respectively, exceeded the criterion. As a result of calculation of the geoaccumulation index and the enrichment factor, the soils were extremely contaminated with Cd and such high loading of Cd to the soils was due to anthropogenic source(s). Sequential extraction of the soils, however, showed that heavy metals including Cd existed as hardly extractable phases, which represented a low bioavailability of the heavy metals. Our results indicated that Cd contamination around the coal-fired power plants was due to artificial source(s) and may unlikely deteriorate nearby ecosystems.

The Variation of Density and Settlement for Contaminated Sediments During Electrokinetic Sedimentation and Remediation Processes (오염퇴적토에 대한 동전기적 침전 및 정화 공정에서의 시료 밀도 및 침하 변화 특성)

  • Chung, Ha-Ik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.9
    • /
    • pp.5-14
    • /
    • 2006
  • Generally, the sediments contain significant water, clay, colloidal fraction and contaminants, and can result in soft strata with high initial void, and its potential hazards in subsurface environments exist. Electrokinetic technique has been used in sedimentation for volume reduction of slurry tailing wastes and in remediation for extraction of contaminants from contaminated soils. In this research, the coupled effects of sedimentation and remediation of contaminated sediments are focused using electrokinetic sedimentation and remediation techniques from experimental aspects. A series of laboratory experiments including variable conditions such as initial solid content of the specimen, concentration level of the contaminant, and magnitude of applied voltage are performed with the contaminated sediment specimens mixed with ethylene glycol. Commercially available high specification Kaolin was used to simulate slurried sediment. From the test results, the settlement of specimen increases with increasing of applied voltage and decreasing of solid content and contamination level. The density of specimen increases due to settlement of specimen in the process of electrokinetic sedimentation and decreases due to extraction of organic contaminant in the process of electrokinetic remediation.

The Enhanced Electrophoresis Method in Leachate System for Repairing of Leaks in Waste Landfill Geomembrane Liner (폐기물 매립지 차수층 누출시 전기영동 복원을 위한 침출수에서의 향상기법)

  • Kim, Jong-Yun;Han, Sang-Jae;Kim, Soo-Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1C
    • /
    • pp.7-15
    • /
    • 2010
  • In case that the seepage of contaminants into the subsurface has been generated from the waste impoundment by demage of geomembrane liner, it is necessary to repair the leaks of geomembrane liner for minimizing the environmental contamination by electrophoresis method. However, when electrophoresis method is applied to leachate electrolyte system, the phenomenon of clay particles flocculation would be accelerated by the interaction between clay particles and specific chemicals in leachate. In addition, the gravitational settling behaviour would be induced superior to the electrophoretic migration behaviour. Eventually, the limitations of field applicability for using the electrophoresis method are appeared. Therefore, 1-D enhanced electrophoresis method is conducted to prevent the clay flocculation and accelerate the migration of clay particles separately. After the 1-D enhanced electrophoresis experiment, we can get the results that the deflocculation effect of clay particles is increased by electrical repulsion of polymer, which adsorbed in clay particle edge, in case of using PAA dispersing agent.