DOI QR코드

DOI QR Code

Investigation on Geochemical Characteristics of Heavy Metals in Soils in the Vicinity of Samcheonpo and Hadong Coal-Fired Power Plants in Korea

국내 삼천포와 하동 석탄 화력발전소 주변 토양 내 중금속의 지구화학적 특성 조사

  • Song, Chang-Woo (Department of Energy and Resources Engineering, Chonnam National University) ;
  • Han, Hyeop-Jo (Department of Energy and Resources Engineering, Chonnam National University) ;
  • Lee, Jong-Un (Department of Energy and Resources Engineering, Chonnam National University)
  • 송창우 (전남대학교 에너지자원공학과) ;
  • 한협조 (전남대학교 에너지자원공학과) ;
  • 이종운 (전남대학교 에너지자원공학과)
  • Received : 2019.03.27
  • Accepted : 2019.04.24
  • Published : 2019.04.28

Abstract

The quantity of heavy metals in agricultural surface and subsurface soils around coal-fired power plants located in Samcheonpo and Hadong, Gyeongnam Province, were determined. The analytical results for 48 and 61 soils in Samcheonpo and Hadong, respectively, showed that the concentrations of Cu, Hg, Ni, Pb, and Zn were below the warning criteria regulated by Korean Soil Conservation Act; however, Cd in 38 and 13 soils in Samcheonpo and Hadong, respectively, exceeded the criterion. As a result of calculation of the geoaccumulation index and the enrichment factor, the soils were extremely contaminated with Cd and such high loading of Cd to the soils was due to anthropogenic source(s). Sequential extraction of the soils, however, showed that heavy metals including Cd existed as hardly extractable phases, which represented a low bioavailability of the heavy metals. Our results indicated that Cd contamination around the coal-fired power plants was due to artificial source(s) and may unlikely deteriorate nearby ecosystems.

경남에 소재하는 삼천포 및 하동 석탄 화력발전소 인근 농경지 토양을 대상으로 중금속 함량을 측정하였다. 삼천포지역 48개, 하동 지역 61개의 표토 및 심토를 대상으로 분석한 결과, Cu, Hg, Ni, Pb, Zn는 모두 토양오염 우려기준 미만으로 나타났으나 Cd는 삼천포 38개, 하동 13개 시료에서 우려기준을 초과하였다. 지질부하지수와 농축계수를 구한 결과 Cd는 높은 오염도를 보였으며 Cd와 Pb는 인위적 오염원에 의한 토양 내 농축인 것으로 보인다. 그러나 연속추출을 통해 중금속의 존재형태를 규명한 결과 Cd를 포함한 토양 내 중금속들은 대부분 용출 가능성이 매우 적은 형태로 존재하여 생물이용도가 낮게 나타났다. 이러한 결과는 석탄 화력발전소 인근 토양이 인위적인 요인으로 인해 Cd로 오염되었으나 인근 생태계로 유입될 가능성은 낮음을 의미한다.

Keywords

JOHGB2_2019_v52n2_141_f0001.png 이미지

Fig. 1. Distribution of soil sampling sites in (a) Samcheonpo and (b) Hadong areas.

JOHGB2_2019_v52n2_141_f0002.png 이미지

Fig. 2. Spatial distribution of heavy metals in the Samcheonpo power plant area.

JOHGB2_2019_v52n2_141_f0003.png 이미지

Fig. 3. Spatial distribution of heavy metals in the Hadong power plant area.

JOHGB2_2019_v52n2_141_f0004.png 이미지

Fig. 4. The percentage distribution of heavy metals fraction of Samcheonpo soils by sequential extraction. -S and –D in each sample name represent surface and subsurface, respectively.

JOHGB2_2019_v52n2_141_f0005.png 이미지

Fig. 5. The percentage distribution of heavy metals fraction of Hadong soils by sequential extraction. -S and –D in each sample name represent surface and subsurface, respectively.

Table 1. Classes of geoaccumulation index (Igeo) (Müller, 1981)

JOHGB2_2019_v52n2_141_t0001.png 이미지

Table 2. Classes of enrichment factor (EF) (Sutherland, 2000)

JOHGB2_2019_v52n2_141_t0002.png 이미지

Table 3. Values of pH, cation exchange capacity (CEC) and organic matter content of the Samcheonpo soil samples (units: CEC, meq/100 g, organic matter, %)

JOHGB2_2019_v52n2_141_t0003.png 이미지

Table 4. Values of pH, cation exchange capacity (CEC) and organic matter content of the Hadong soil samples (units: CEC, meq/100 g, organic matter, %)

JOHGB2_2019_v52n2_141_t0004.png 이미지

Table 5. Concentrations of heavy metals in the Samcheonpo soils (unit: mg/kg except Hg of μg/kg). The numbers in parentheses represent Korean Soil Warning Criteria for Area 1

JOHGB2_2019_v52n2_141_t0005.png 이미지

Table 6. Concentrations of heavy metals in the Hadong soils (unit: mg/kg except Hg of μg/kg). The numbers in parentheses represent Korean Soil Warning Criteria for Area 1.

JOHGB2_2019_v52n2_141_t0006.png 이미지

Table 6. Continued.

JOHGB2_2019_v52n2_141_t0007.png 이미지

Table 7. Geoaccumulation index (Igeo) of the Samcheonpo soils

JOHGB2_2019_v52n2_141_t0008.png 이미지

Table 8. Geoaccumulation index (Igeo) of the Hadong soils

JOHGB2_2019_v52n2_141_t0009.png 이미지

Table 9. Enrichment factor of the Samcheonpo soils

JOHGB2_2019_v52n2_141_t0010.png 이미지

Table 10. Enrichment factor of the Hadong soils

JOHGB2_2019_v52n2_141_t0011.png 이미지

References

  1. Abbasi, S.A., Nipaney, P.C., and Soni, R. (1989) Environmental status of cobalt and its micro determination with 7-nitroso-8-hydroxy-quinoline-5-sulfonic acid in waters, aquatic weeds and animal tissues. Anal. Lett., v.22, p.225-235. https://doi.org/10.1080/00032718908051196
  2. Alloway, B.J. (1995) Heavy metals in soils, 2nd Ed. Chapman & Hall, Glasgow, UK, 155p.
  3. Alloway, B.J. (2008) Zinc in soils and crop nutrition, 2nd Ed. International Zinc Association and International Fertilizer Association, Brussels, Belgium, 16p.
  4. Bhuiyan, M.A.H., Parvez, L., Islam, M.A., Dampare, S.B., and Suzuki, S. (2010) Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. J. Hazard. Mater., v.173, p.384-392. https://doi.org/10.1016/j.jhazmat.2009.08.085
  5. Blaser P., Zimmermann, S., Luster, J., and Shotyk, W. (2000) Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss forest soils. Sci. Tot. Environ., v.249, p.257-280. https://doi.org/10.1016/S0048-9697(99)00522-7
  6. Boyle, J. (2004) A comparison of two methods for estimating the organic matter content of sediments. J. Paleolimn., v.31, p.125-127. https://doi.org/10.1023/B:JOPL.0000013354.67645.df
  7. Buat-Menard, P. and Chesselet, R. (1979) Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth Planet. Sci. Lett., v.42, p.398-411.
  8. Chabukdhara, M. and Nema, A.K. (2012) Assessment of heavy metal contamination in Hindon River sediments: A chemometric and geochemical approach. Chemosphere, v.87, p.945-953. https://doi.org/10.1016/j.chemosphere.2012.01.055
  9. Chen, J., Liu, G., Kang, Y., Wu, B., Sun, R., Zhou, C., and Wu, D. (2013) Atmospheric emissions of F, As, Se, Hg, and Sb from coal-fired power and heat generation in China. Chemosphere, v.90, p.1925-1932. https://doi.org/10.1016/j.chemosphere.2012.10.032
  10. Cheng, K., Tian, H.Z., Zhao, D., Lu, L., Wang, Y., Chen, J., Liu, X.G., Jia, W.X., and Huang, Z. (2014) Atmospheric emission inventory of cadmium from anthropogenic sources. Int. J. Environ. Sci. Technol., v.11, p.605-616. https://doi.org/10.1007/s13762-013-0206-3
  11. Cox, D.P. (1979) Copper in the environment, part I: Ecological cycling, Ed. Nriagu, J.O. Wiley, New York, p.19-42.
  12. Environmental Health and Engineering (EH&E) (2011) Emissions of hazardous air pollutants from coal-fired power plants, Environmental Health and Engineering, Inc., Newton, MA, 11p.
  13. Emsley, J. (2001) Chromium - Nature's building blocks: An A-Z guide to the elements. Oxford University Press, New York, 136p.
  14. Enamorado-Baez, S.M., Gomez-Guzman, J.M., Chamizo, E., and Abril, J.M. (2015) Levels of 25 trace elements in high-volume air filter samples from Seville (2001-2002): Sources, enrichment factors and temporal variations. Atmos. Res., v.155, p.118-129. https://doi.org/10.1016/j.atmosres.2014.12.005
  15. Fay, J.A. and Golomb, D.S. (2002) Energy and the environment. Oxford University Press, New York, 112p.
  16. Fernandez-Turiel, J.L., Carvalho, W., Cabanas, M., Querol, X., and Lopez-Soler, A. (1994) Mobility of heavy metals from coal fly ash. J. Environ. Geol., v.23, p.264-270. https://doi.org/10.1007/BF00766741
  17. Heinrichs, H., Schultz, D.B., and Wedepohl, K.J. (1980) Terrestrial geochemistry of Cd, Bi, Tl, Pb, Zn and Rb. Geochim. Cosmochim. Acta, v.44, p.1519-1532. https://doi.org/10.1016/0016-7037(80)90116-7
  18. Ketris, M.P. and Yudovich, Y.E. (2009) Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol., v.78, p.135-148. https://doi.org/10.1016/j.coal.2009.01.002
  19. Kim, G.H., Kim, G.Y., Kim, J.K., S, D.M., Seo, J.S., Son, B.K., Yang, J.E., Um, K.C., Lee, S.E., Jeong, K.Y., Jeong, D.Y., Jeong, Y.T., Jeong, J.B., and Hyeon, H.N. (2009) Soil science, 2nd Ed. Hyangmoon-sa, Seoul, Korea, 195p. (in Korean)
  20. Korean Statistical Information Service (KOSIS), 2019.03.08, http://kosis.kr.
  21. Mandal, A. and Sengupta, D. (2006) An assessment of soil contamination due to heavy metals around a coalfired thermal power plant in India. Environ. Geol., v.51, p.409-420. https://doi.org/10.1007/s00254-006-0336-8
  22. Marett, L.S. (2007) Trace metal particulates in coal-fired power plant emissions. MS Thesis, University of Georgia, USA, p.8.
  23. Maurizio, B., Angela, N., and Giuseppe, S. (2015) Soil contamination evaluation by enrichment factor (EF) and geoaccumulation index (Igeo). Senses Sciences, v.2, p.94-97.
  24. Merian, E. (1991) Metals and their compounds in the environment Part I. VCH Verlagsgesellschaft mbH, Weinheim, Germany, p.6.
  25. Ministry of Environment (MOE) (2018) Report on soil measurement network and soil contamination actual condition in 2017. 2019.03.08, http://webbook.me.go.kr/DLi-File/091/027/003/5671217.pdf.
  26. Mirjana, C. Snezana, D. Milan, D. Ranko, D., and Bosko, G. (2016) Environmental assessment of heavy metals around the largest coal fired power plant in Serbia. Catena., v.139, p.44-52. https://doi.org/10.1016/j.catena.2015.12.001
  27. Muller, G. (1969) Index of geoaccumulation in the sediments of the Rhine River. J. Geol., v.2, p.108-118.
  28. Muller, G. (1981) Die Schwermetallbelstung der sedimente des Neckars und seiner Nebenflusse: eine Bestandsaufnahme. Chemical Zeitung., v.105, p.157-164.
  29. Nowrouzi, M. and Pourkhabbaz, A. (2014) Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Hara Biosphere Reserve, Iran. Chem. Speciation Bioavail., v.26, p.99-105. https://doi.org/10.3184/095422914X13951584546986
  30. Reiman, C. and Decarital, P. (2000) Intrinsic flaws of element enrichment factors (Efs) in environmental geochemistry. Environ. Sci. Technol., v.34, p.5084-5091. https://doi.org/10.1021/es001339o
  31. Richard, F.C. and Bourg, A.C.M. (1991) Aqueous geochemistry of chromium: A review. Water Res., v.25, p.807-816. https://doi.org/10.1016/0043-1354(91)90160-R
  32. Roh, A.S., Park, J.S., Kim, Y.H., and Kang, S.S. (2015) Status and changes in chemical properties of paddy soil in Gyeonggi Province. Korean J. Soil. Sci. Fert., v.48, p.968-972. (in Korean)
  33. Shao, X., Cheng, H., Li, Q., and Lin, C. (2013) Anthropogenic atmospheric emissions of cadmium in China. Atmos. Environ., v.79, p.155-160. https://doi.org/10.1016/j.atmosenv.2013.05.055
  34. Song, C.-W., Han, H.-J., and Lee, J.-U. (2019) Investigation on heavy metal distribution in soils around Boryeong coal-fired power plant. J. Korean Soc. Miner. Energy Resour. Eng., v.56, p.10-22. (in Korean) https://doi.org/10.32390/ksmer.2019.56.1.010
  35. Srinivasa, G.S., Ramakrishna, R.M., and Govil, P.K. (2010) Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. J. Hazard. Mater., v.174, p.113-121. https://doi.org/10.1016/j.jhazmat.2009.09.024
  36. Suh, J.W., Yoon, H.O., and Jeong, C.H. (2008) The distribution characteristics and contaminated of heavy metals in soil from Dalcheon Mine. J. Miner. Soc. Korea, v.21, p.57-65. (in Korean)
  37. Sutherland, R.A. (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol., v.39, p.611-627. https://doi.org/10.1007/s002540050473
  38. Taylor, S.R. (1964) Abundance of chemical elements in the continental crust - a new table. Geochim. Cosmochim. Acta, v.28, p.1273-1285. https://doi.org/10.1016/0016-7037(64)90129-2
  39. Taylor, S.R. and McLennan, S.M. (1995) The geochemical evolution of the continental crust. Rev. Geophys., v.33, p.241-265. https://doi.org/10.1029/95RG00262
  40. Tessier, A., Campbell, P.G.C., and Bisson, M. (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem., v.51, p.844-851. https://doi.org/10.1021/ac50043a017
  41. Tian, H., Zhao, D., Cheng, K., Lu, L., He, M., and Hao, J. (2012) Anthropogenic atmospheric emissions of antimony and its spatial distribution characteristics in China. Environ. Sci. Technol., v.46, p.3973-3980. https://doi.org/10.1021/es2041465
  42. Uduma, A.U. and Awagu, E.F. (2013) Manganese as a reference element for the assessment of zinc enrichment and depletion in selected farming soil of Nigeria. Res. J. Environ. Earth Sci., v.5, p.497-504. https://doi.org/10.19026/rjees.5.5679
  43. Wang, Q., Shen, W., and Ma, Z. (2000) Estimation of mercury emission from coal combustion in China. Environ. Sci. Technol., v.34, p.2711-2713. https://doi.org/10.1021/es990774j
  44. Wang, W., Qin, Y., Song, D., and Wang, K. (2008) Column leaching of coal and its combustion residues, Shizuishan, China. Int. J. Coal Geol., v.75, p.81-87. https://doi.org/10.1016/j.coal.2008.02.004
  45. Xianfei, H., Jiwei, H., Fanxin, Q., Wenxuan, Q., Rensheng, C., Mingyi, F., and Xianliang, W. (2017) Heavy metal pollution and ecological assessment around the Jinsha coal-fired power plant (China). Int. J. Environ. Res. Public Health., v.14, p.1-12. https://doi.org/10.3390/ijerph14010001
  46. Yaroshevsky, A.A. (2005) Abundances of chemical elements in the Earth's crust. Geochem. Int., v.44, p.48-55. https://doi.org/10.1134/S001670290601006X