Browse > Article
http://dx.doi.org/10.9719/EEG.2019.52.2.141

Investigation on Geochemical Characteristics of Heavy Metals in Soils in the Vicinity of Samcheonpo and Hadong Coal-Fired Power Plants in Korea  

Song, Chang-Woo (Department of Energy and Resources Engineering, Chonnam National University)
Han, Hyeop-Jo (Department of Energy and Resources Engineering, Chonnam National University)
Lee, Jong-Un (Department of Energy and Resources Engineering, Chonnam National University)
Publication Information
Economic and Environmental Geology / v.52, no.2, 2019 , pp. 141-158 More about this Journal
Abstract
The quantity of heavy metals in agricultural surface and subsurface soils around coal-fired power plants located in Samcheonpo and Hadong, Gyeongnam Province, were determined. The analytical results for 48 and 61 soils in Samcheonpo and Hadong, respectively, showed that the concentrations of Cu, Hg, Ni, Pb, and Zn were below the warning criteria regulated by Korean Soil Conservation Act; however, Cd in 38 and 13 soils in Samcheonpo and Hadong, respectively, exceeded the criterion. As a result of calculation of the geoaccumulation index and the enrichment factor, the soils were extremely contaminated with Cd and such high loading of Cd to the soils was due to anthropogenic source(s). Sequential extraction of the soils, however, showed that heavy metals including Cd existed as hardly extractable phases, which represented a low bioavailability of the heavy metals. Our results indicated that Cd contamination around the coal-fired power plants was due to artificial source(s) and may unlikely deteriorate nearby ecosystems.
Keywords
coal-fired power plant; heavy metals; soil; cadmium; sequential extraction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang, W., Qin, Y., Song, D., and Wang, K. (2008) Column leaching of coal and its combustion residues, Shizuishan, China. Int. J. Coal Geol., v.75, p.81-87.   DOI
2 Xianfei, H., Jiwei, H., Fanxin, Q., Wenxuan, Q., Rensheng, C., Mingyi, F., and Xianliang, W. (2017) Heavy metal pollution and ecological assessment around the Jinsha coal-fired power plant (China). Int. J. Environ. Res. Public Health., v.14, p.1-12.   DOI
3 Yaroshevsky, A.A. (2005) Abundances of chemical elements in the Earth's crust. Geochem. Int., v.44, p.48-55.   DOI
4 Taylor, S.R. and McLennan, S.M. (1995) The geochemical evolution of the continental crust. Rev. Geophys., v.33, p.241-265.   DOI
5 Abbasi, S.A., Nipaney, P.C., and Soni, R. (1989) Environmental status of cobalt and its micro determination with 7-nitroso-8-hydroxy-quinoline-5-sulfonic acid in waters, aquatic weeds and animal tissues. Anal. Lett., v.22, p.225-235.   DOI
6 Alloway, B.J. (1995) Heavy metals in soils, 2nd Ed. Chapman & Hall, Glasgow, UK, 155p.
7 Boyle, J. (2004) A comparison of two methods for estimating the organic matter content of sediments. J. Paleolimn., v.31, p.125-127.   DOI
8 Alloway, B.J. (2008) Zinc in soils and crop nutrition, 2nd Ed. International Zinc Association and International Fertilizer Association, Brussels, Belgium, 16p.
9 Bhuiyan, M.A.H., Parvez, L., Islam, M.A., Dampare, S.B., and Suzuki, S. (2010) Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. J. Hazard. Mater., v.173, p.384-392.   DOI
10 Blaser P., Zimmermann, S., Luster, J., and Shotyk, W. (2000) Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss forest soils. Sci. Tot. Environ., v.249, p.257-280.   DOI
11 Buat-Menard, P. and Chesselet, R. (1979) Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth Planet. Sci. Lett., v.42, p.398-411.
12 Chabukdhara, M. and Nema, A.K. (2012) Assessment of heavy metal contamination in Hindon River sediments: A chemometric and geochemical approach. Chemosphere, v.87, p.945-953.   DOI
13 Chen, J., Liu, G., Kang, Y., Wu, B., Sun, R., Zhou, C., and Wu, D. (2013) Atmospheric emissions of F, As, Se, Hg, and Sb from coal-fired power and heat generation in China. Chemosphere, v.90, p.1925-1932.   DOI
14 Cheng, K., Tian, H.Z., Zhao, D., Lu, L., Wang, Y., Chen, J., Liu, X.G., Jia, W.X., and Huang, Z. (2014) Atmospheric emission inventory of cadmium from anthropogenic sources. Int. J. Environ. Sci. Technol., v.11, p.605-616.   DOI
15 Cox, D.P. (1979) Copper in the environment, part I: Ecological cycling, Ed. Nriagu, J.O. Wiley, New York, p.19-42.
16 Fay, J.A. and Golomb, D.S. (2002) Energy and the environment. Oxford University Press, New York, 112p.
17 Environmental Health and Engineering (EH&E) (2011) Emissions of hazardous air pollutants from coal-fired power plants, Environmental Health and Engineering, Inc., Newton, MA, 11p.
18 Emsley, J. (2001) Chromium - Nature's building blocks: An A-Z guide to the elements. Oxford University Press, New York, 136p.
19 Enamorado-Baez, S.M., Gomez-Guzman, J.M., Chamizo, E., and Abril, J.M. (2015) Levels of 25 trace elements in high-volume air filter samples from Seville (2001-2002): Sources, enrichment factors and temporal variations. Atmos. Res., v.155, p.118-129.   DOI
20 Fernandez-Turiel, J.L., Carvalho, W., Cabanas, M., Querol, X., and Lopez-Soler, A. (1994) Mobility of heavy metals from coal fly ash. J. Environ. Geol., v.23, p.264-270.   DOI
21 Heinrichs, H., Schultz, D.B., and Wedepohl, K.J. (1980) Terrestrial geochemistry of Cd, Bi, Tl, Pb, Zn and Rb. Geochim. Cosmochim. Acta, v.44, p.1519-1532.   DOI
22 Ketris, M.P. and Yudovich, Y.E. (2009) Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol., v.78, p.135-148.   DOI
23 Kim, G.H., Kim, G.Y., Kim, J.K., S, D.M., Seo, J.S., Son, B.K., Yang, J.E., Um, K.C., Lee, S.E., Jeong, K.Y., Jeong, D.Y., Jeong, Y.T., Jeong, J.B., and Hyeon, H.N. (2009) Soil science, 2nd Ed. Hyangmoon-sa, Seoul, Korea, 195p. (in Korean)
24 Korean Statistical Information Service (KOSIS), 2019.03.08, http://kosis.kr.
25 Mandal, A. and Sengupta, D. (2006) An assessment of soil contamination due to heavy metals around a coalfired thermal power plant in India. Environ. Geol., v.51, p.409-420.   DOI
26 Ministry of Environment (MOE) (2018) Report on soil measurement network and soil contamination actual condition in 2017. 2019.03.08, http://webbook.me.go.kr/DLi-File/091/027/003/5671217.pdf.
27 Marett, L.S. (2007) Trace metal particulates in coal-fired power plant emissions. MS Thesis, University of Georgia, USA, p.8.
28 Maurizio, B., Angela, N., and Giuseppe, S. (2015) Soil contamination evaluation by enrichment factor (EF) and geoaccumulation index (Igeo). Senses Sciences, v.2, p.94-97.
29 Merian, E. (1991) Metals and their compounds in the environment Part I. VCH Verlagsgesellschaft mbH, Weinheim, Germany, p.6.
30 Mirjana, C. Snezana, D. Milan, D. Ranko, D., and Bosko, G. (2016) Environmental assessment of heavy metals around the largest coal fired power plant in Serbia. Catena., v.139, p.44-52.   DOI
31 Muller, G. (1969) Index of geoaccumulation in the sediments of the Rhine River. J. Geol., v.2, p.108-118.
32 Muller, G. (1981) Die Schwermetallbelstung der sedimente des Neckars und seiner Nebenflusse: eine Bestandsaufnahme. Chemical Zeitung., v.105, p.157-164.
33 Roh, A.S., Park, J.S., Kim, Y.H., and Kang, S.S. (2015) Status and changes in chemical properties of paddy soil in Gyeonggi Province. Korean J. Soil. Sci. Fert., v.48, p.968-972. (in Korean)
34 Nowrouzi, M. and Pourkhabbaz, A. (2014) Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Hara Biosphere Reserve, Iran. Chem. Speciation Bioavail., v.26, p.99-105.   DOI
35 Reiman, C. and Decarital, P. (2000) Intrinsic flaws of element enrichment factors (Efs) in environmental geochemistry. Environ. Sci. Technol., v.34, p.5084-5091.   DOI
36 Richard, F.C. and Bourg, A.C.M. (1991) Aqueous geochemistry of chromium: A review. Water Res., v.25, p.807-816.   DOI
37 Shao, X., Cheng, H., Li, Q., and Lin, C. (2013) Anthropogenic atmospheric emissions of cadmium in China. Atmos. Environ., v.79, p.155-160.   DOI
38 Suh, J.W., Yoon, H.O., and Jeong, C.H. (2008) The distribution characteristics and contaminated of heavy metals in soil from Dalcheon Mine. J. Miner. Soc. Korea, v.21, p.57-65. (in Korean)
39 Song, C.-W., Han, H.-J., and Lee, J.-U. (2019) Investigation on heavy metal distribution in soils around Boryeong coal-fired power plant. J. Korean Soc. Miner. Energy Resour. Eng., v.56, p.10-22. (in Korean)   DOI
40 Srinivasa, G.S., Ramakrishna, R.M., and Govil, P.K. (2010) Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. J. Hazard. Mater., v.174, p.113-121.   DOI
41 Sutherland, R.A. (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol., v.39, p.611-627.   DOI
42 Taylor, S.R. (1964) Abundance of chemical elements in the continental crust - a new table. Geochim. Cosmochim. Acta, v.28, p.1273-1285.   DOI
43 Wang, Q., Shen, W., and Ma, Z. (2000) Estimation of mercury emission from coal combustion in China. Environ. Sci. Technol., v.34, p.2711-2713.   DOI
44 Tessier, A., Campbell, P.G.C., and Bisson, M. (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem., v.51, p.844-851.   DOI
45 Tian, H., Zhao, D., Cheng, K., Lu, L., He, M., and Hao, J. (2012) Anthropogenic atmospheric emissions of antimony and its spatial distribution characteristics in China. Environ. Sci. Technol., v.46, p.3973-3980.   DOI
46 Uduma, A.U. and Awagu, E.F. (2013) Manganese as a reference element for the assessment of zinc enrichment and depletion in selected farming soil of Nigeria. Res. J. Environ. Earth Sci., v.5, p.497-504.   DOI