• Title/Summary/Keyword: substructures

Search Result 287, Processing Time 0.023 seconds

Degree-of-Freedom-Based Reduction Method for Modal Analysis of Repeated Structure (반복 구조물의 모드 해석을 위한 효과적인 자유도 기반 축소 기법)

  • Choi, Geomji;Chang, Seongmin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.2
    • /
    • pp.71-75
    • /
    • 2021
  • Despite the development of computational resources, the need to analyze models is increasing. The size of model has been increased to analyze the entire structure more accurately and precisely. As the analysis model becomes larger and more complex, the computation time increases exponentially. Various industries use many structures that have repeated patterns. We focus on these structures with repeated patterns and propose a dynamic analysis method to efficiently calculate these repeated structures. To devise an efficient method for repeated structures, the substructuring scheme and the degree of freedom-based reduction method are used in this study. We modify the existing reduction method in consideration of the characteristics of the repeating structure. In the proposed method, the entire structure was expressed as a combination of substructures, where each substructure was represented as an unit cell of repeated structures. The substructures were condensed and assembled using the substructuring scheme and the modified condensation method. Finally, numerical examples were demonstrated to verify the efficiency and accuracy of proposed method.

Study on the progressive collapse resistance of CP-FBSP connections in L-CFST frame structure

  • Xiong, Qingqing;Wu, Wenbo;Zhang, Wang;Chen, Zhihua;Liu, Hongbo;Su, Tiancheng
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.437-450
    • /
    • 2022
  • When the vertical load-bearing members in high-rise structures fail locally, the beam-column joints play an important role in the redistribution of the internal forces. In this paper, a static laboratory test of three full-scale flush flange beam-reinforced connections with side and cover plates (CP-FBSP connection) with double half-span steel beams and single L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) was conducted. The influence of the side plate width and cover plate thickness on the progressive collapse resistance of the substructure was thoroughly analyzed. The failure mode, vertical force-displacement curves, strain variation, reaction force of the pin support and development of internal force in the section with the assumed plastic hinge were discussed. Then, through the verified finite element model, the corresponding analyses of the thickness and length of the side plates, the connecting length between the steel beam flange and cover plate, and the vertical-force eccentricity were carried out. The results show that the failure of all the specimens occurred through the cracking of the beam flange or the cover plate, and the beam chord rotations measured by the test were all greater than 0.085 rad. Increasing the length, thickness and width of the side plates slightly reduced the progressive collapse resistance of the substructures. The vertical-force eccentricity along the beam length reduced the progressive collapse resistance of the substructure. An increase in the connecting length between the beam flange and cover plate can significantly improve the progressive collapse resistance of substructures.

Analytical and experimental exploration of sobol sequence based DoE for response estimation through hybrid simulation and polynomial chaos expansion

  • Rui Zhang;Chengyu Yang;Hetao Hou;Karlel Cornejo;Cheng Chen
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.113-130
    • /
    • 2023
  • Hybrid simulation (HS) has attracted community attention in recent years as an efficient and effective experimental technique for structural performance evaluation in size-limited laboratories. Traditional hybrid simulations usually take deterministic properties for their numerical substructures therefore could not account for inherent uncertainties within the engineering structures to provide probabilistic performance assessment. Reliable structural performance evaluation, therefore, calls for stochastic hybrid simulation (SHS) to explicitly account for substructure uncertainties. The experimental design of SHS is explored in this study to account for uncertainties within analytical substructures. Both computational simulation and laboratory experiments are conducted to evaluate the pseudo-random Sobol sequence for the experimental design of SHS. Meta-modeling through polynomial chaos expansion (PCE) is established from a computational simulation of a nonlinear single-degree-of-freedom (SDOF) structure to evaluate the influence of nonlinear behavior and ground motions uncertainties. A series of hybrid simulations are further conducted in the laboratory to validate the findings from computational analysis. It is shown that the Sobol sequence provides a good starting point for the experimental design of stochastic hybrid simulation. However, nonlinear structural behavior involving stiffness and strength degradation could significantly increase the number of hybrid simulations to acquire accurate statistical estimation for the structural response of interests. Compared with the statistical moments calculated directly from hybrid simulations in the laboratory, the meta-model through PCE gives more accurate estimation, therefore, providing a more effective way for uncertainty quantification.

Experiments and theory for progressive collapse resistance of ECC-concrete composite beam-column substructures

  • Weihong Qin;Wang Song;Peng Feng;Zhuo Xi;Tongqing Zhang
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.65-80
    • /
    • 2023
  • To explore the effect of Engineered Cementitious Composite (ECC) on improving the progressive collapse resistance of reinforced concrete frames under a middle column removal scenario, six beam-column substructures were tested by quasistatic vertical loading. Among the six specimens, four were ECC-concrete composite specimens consisting of different depth of ECC at the bottom or top of the beam and concrete in the rest of the beam, while the other two are ordinary reinforced concrete specimens with different concrete strength grades for comparison. The experimental results demonstrated that ECC-concrete composite specimens can improve the bearing capacity of a beam-column substructure at the stages of compressive arch action (CAA) and catenary action in comparison with ordinary concrete specimen. Under the same depth of ECC, the progressive collapse resistance of a specimen with ECC at the beam bottom was superior to that at the beam top. With the increase of the proportion of ECC arranged at the beam bottom, the bearing capacity of a composite substructure was increased, but the increase rate slows down with the proportion. Meanwhile, the nonlinear numerical analysis software MSC Marc was used to simulate the whole loading process of the six specimens. Theoretical formulas to calculate the capacities of ECC-concrete composite specimens at the stages of flexural action, CAA and catenary action are proposed. Based on the research results, this study suggests that ECC should be laid out at the beam bottom and the layout depth should be within 25% of the total beam depth.

Damage assessment from curvature mode shape using unified particle swarm optimization

  • Nanda, Bharadwaj;Maity, Damodar;Maiti, Dipak Kumar
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.307-322
    • /
    • 2014
  • A two-step procedure to detect and quantify damages in structures from changes in curvature mode shapes is presented here. In the first step the maximum difference in curvature mode shapes of the undamaged and damaged structure are used for visual identification of the damaged internal-substructure. In the next step, the identified substructures are searched using unified particle swarm optimization technique for exact identification of damage location and amount. Efficiency of the developed procedure is demonstrated using beam like structures. This methodology may be extended for identifying damages in general frame structures.

Earthquake Response Analysis of K-TGV against El Centro Earthquake (경부 고속철도차량의 El Centro 지진에 대한 지진응답해서)

  • 김준희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.435-442
    • /
    • 2000
  • In this thesis the dynamic behavior of the vehicles is analyzed while the track is subjected to lateral vibration due to earthquakes. A computer program is developed which can simulate dynamic responses of vehicles subjected to earthquake loading. The analysis considers two types of two types of vehicles : I. e. a 2-axle vehicle with 13 DOF's an da power car of K-TGV with 38 DOF's It can also consider the interaction with substructures such as tracks and bridges. El Centro record is considered as earthquake loading. The creep force module developed in this study is verified and the results of this study are compared with those of others. Furthermore he running safety of high-speed railway vehicles(K-TGV) subjected to earthquake loading is studied. Based on the results of this study the running safety of the K-TGV can be confirmed against el centro earthquake.

  • PDF

Selection of Nodes and Modes for Reduced Modeling of Substructures (부분구조물의 축약 모델링을 위한 절점 및 모드의 선정)

  • Hwang, Woo Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.4
    • /
    • pp.232-237
    • /
    • 2015
  • Complex dynamic systems are composed of several subsystems. Each subsystems affect the dynamics of other subsystems since they are connected to each other in the whole system. Theoretically, we can derive the exact mass and stiffness matrix of a system if we have the natural frequencies and mode shapes of that system. In real situation, the modal parameters for the higher modes are not available and the number of degree of freedom concerned are not so high. This paper shows a simple method to derive the mass and stiffness matrix of a system considering the connecting points of subsystems. Since the accuracy of reconstructed structure depends on the selection of node and mode, the rule for selection of node and mode are derived from the numerical examples.

ENVIRONMENTAL DEPENDENCE OF STAR FORMATION AND GALAXY TRANSFORMATION IN MERGING GALAXY CLUSTER ABELL 2255: AKARI'S POINT OF VIEW

  • Shim, Hyunjin
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.331-334
    • /
    • 2012
  • We investigate the role of galaxy environment in the evolution of individual galaxies through the AKARI observations of the merging galaxy cluster A2255. MIR diagnostics using N3-S11 colors are adopted to select star-forming galaxies and galaxies in transition between star-forming galaxies and quiescent galaxies. We do not find particular enhancement of star formation rates as a function of galaxy environment, reflected in cluster-centric distance and local surface density of galaxies. Instead, the locations of intermediate MIR-excess galaxies (-1.2 < N3 - S11 < 0.2) show that star-forming galaxies are transformed into passive galaxies in the substructures of A2255, where the local surface density of galaxies is relatively high.

The ship collision analysis of dolphin protection system (돌핀방호공의 선박충돌해석)

  • Lee Gye-Hee;Lee Seong-Lo;Go Jae-Yong;Yu Won-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.143-150
    • /
    • 2005
  • In this study, to evaluate the collision behaviors of the navigating vessel and the dolphin protective system protecting the substructures of bridges, the numerical simulation was performed. The analysis model of vessel bow that the plastic deformations are concentrated was composed by shell elements, and the main body of vessel was modeled by beam elements to represent the mass distribution and the change of potential energy. The material model reflecting the confining condition was used for the modeling of the filling soil of dolphin system. The surrounding soil of the dolphin system was modeled as nonlinear springs. As results, it is verified that the dolphin system can adequately dissipate the kinematic energy of the collision vessel. The surrounding soil of the dolphin system is able to resist the collision force of the vessel. And the major energy dissipation mechanism of collision energy is the plastic deformation of the vessel bow and the dolphin system.

  • PDF

FORMALISM FOR THE SUBHALO MASS FUNCTION IN THE TIDAL-LIMIT APPROXIMATION

  • LEE JOUNGHUN
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.161-164
    • /
    • 2005
  • We present a theoretical formalism by which the global and the local mass functions of dark matter substructures (dark subhalos) can be analytically estimated. The global subhalo mass function is defined to give the total number density of dark subhalos in the universe as a function of mass, while the local subhalo mass function counts only those sub halos included in one individual host halo. We develop our formalism by modifying the Press-Schechter theory to incorporate the followings: (i) the internal structure of dark halos; (ii) the correlations between the halos and the subhalos; (iii) the subhalo mass-loss effect driven by the tidal forces. We find that the resulting (cumulative) subhalo mass function is close to a power law with the slope of ${\~}$ -1, that the subhalos contribute approximately $10\%$ of the total mass, and that the tidal stripping effect changes the subhalo mass function self-similarly, all consistent with recent numerical detections.