• Title/Summary/Keyword: substructure method

Search Result 334, Processing Time 0.028 seconds

Vibration Analysis of Rotating Disk-Spindle System Using Finite Element Method and Substructure Synthesis (유한 요소법과 부분 구조 합성법을 이용한 회전 디스크-스핀들 계의 진동 해석)

  • Jeong, Myeong-Su;Jang, Geon-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2201-2210
    • /
    • 2000
  • Vibration of a rotating disk-spindle system is analyzed by using Hamilton's principle, FEM and substructure synthesis. A rotating disk undergoes the rigid body motion and the elastic deformation. It s equation of motion is derived by Kirchhoff plate theory and von Karman nonlinear strain. A rotating shaft is described by Rayleigh beam theory considering the axial rigid body motion. The stationay shaft supporting the rotating disk-spindle-bearing system is modeled by Euler beam theory, and the stiffness of ball bearing is determined by A.B.Jones' theory. FEM is used to solve the derived governing equations, and substructure synthesis is introduced to assemble each structure of the rotating disk-spindle system. The developed theory is applied to the spindle system of a 35' computer hard disk drive with 3 disks to verify the simulation results. The simulation results agree very well with the experimental ones. The proposed theory may be effectively expanded to the complex structure of a disk-spindle system.

Design Comparison of Totally Prefabricated Bridge Substructure Systems Designed by Present Design and LRFD Methods (현행설계법 및 하중저항계수설계법에 의한 완전 조립식 교량 하부구조의 설계결과 비교)

  • Kim, Tae-Hoon;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.11-22
    • /
    • 2011
  • The design comparison and nonlinear analysis of totally prefabricated bridge substructure systems are performed. The prefabricated bridge substructures are designed by the methods of present design and load and resistance factor design (LRFD). For the design, the current Korea Highway Bridge Code (KHBD), with DB-24 and DL-24 live loads, is used. This study evaluates the present design method of KHBD (2005) and AASHTO-LRFD (2007) for totally prefabricated bridge substructure systems. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures, was used.

Hybrid simulation tests of high-strength steel composite K-eccentrically braced frames with spatial substructure

  • Li, Tengfei;Su, Mingzhou;Guo, Jiangran
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.381-397
    • /
    • 2021
  • Based on the spatial substructure hybrid simulation test (SHST) method, the seismic performance of a high-strength steel composite K-eccentrically braced frame (K-HSS-EBF) structure system is studied. First, on the basis of the existing pseudostatic experiments, a numerical model corresponding to the experimental model was established using OpenSees, which mainly simulated the shear effect of the shear links. A three-story and five-span spatial K-HSS-EBF was taken as the prototype, and SHST was performed with a half-scale SHST model. According to the test results, the validity of the SHST model was verified, and the main seismic performance indexes of the experimental substructure under different seismic waves were studied. The results show that the hybrid simulation results are basically consistent with the numerical simulation results of the global structure. The deformation of each story is mainly concentrated in the web of the shear link owing to shear deformation. The maximum interstory drifts of the model structure during Strength Level Earthquake (SLE) and Maximum Considered Earthquake (MCE) meet the demands of interstory limitations in the Chinese seismic design code of buildings. In conclusion, the seismic response characteristics of the K-HSS-EBFs are successfully simulated using the spatial SHST, which shows that the K-HSS-EBFs have good seismic performance.

The Application of Geophysical Prospecting for Detecting Substructure and Boundary of Layer In Limestone Area (석회암 지역의 기반암 및 경계면 조사를 위한 지구물리 탐사법의 적용)

  • Suh, Beak-Su;Lee, Duk-Jae
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.285-293
    • /
    • 2000
  • In 1970's, the analysis of shallow substructure was the interests of geological engineering and environmental problems. And seismic refraction method was applied to detect those structures. From 1980's, digital electric industry is rapidly developed and high resolution prospecting equipment is supplied. And seismic reflection method is applied to achieve various data gathering and data analysis. In this study, geophysical prospecting method is applied to calculate the basic data of limestone yield production. Seismic shallow reflection method is used to detect the depth of bedrock and electrical resistivity method is used to detect of limestone layer boundary.

  • PDF

A Study on the Vibration Characteristics of Weaving Machine Structure using Component Mode Synthesis (부분구조합성법을 이용한 제직기 구조물의 진도특성에 관한 연구)

  • 권상석;김병옥;전두환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.535-539
    • /
    • 2001
  • In these days. the finite element method(FEM) is a very common method for not only a simple vibration analysis but also the optimization of structures. Since the finite element model may contain thousands of degree of freedom, the eigensolutions require extreme computing power, which will result in a serious time-consuming problem. Thus, many researchers have challenged to find more improved modeling techniques and calculating methods to overcome such problems. The Guyan reduction method and the substructure synthesis method are typical examples of such methods. Of the substructure synthesis method, the component mode synthesis method (CMS) is widely used for dynamic analysis of structure. In this study. for the efficient analysis of jet loom structure. Component Mode Synthesis was carried out. The results of the finite element program developed are compared with those of the commercial package program ANSYS for the validation of the program. The results obtained by the program showed a good agreement with those of ANSYS. The program will be further refined and verified by test to yield more accurate results.

  • PDF

Substructure/fluid subdomain coupling method for large vibroacoustic problems

  • El Maani, Rabii;El Hami, Abdelkhalak;Radi, Bouchaib
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.359-368
    • /
    • 2018
  • Dynamic analysis of complex and large structures may be costly from a numerical point of view. For coupled vibroacoustic finite element models, the importance of reducing the size becomes obvious because the fluid degrees of freedom must be added to the structural ones. In this paper, a component mode synthesis method is proposed for large vibroacoustic interaction problems. This method couples fluid subdomains and dynamical substructuring of Craig and Bampton type. The acoustic formulation is written in terms of the velocity potential, which implies several advantages: coupled algebraic systems remain symmetric, and a potential formulation allows a direct extension of Craig and Bampton's method to acoustics. Those properties make the proposed method easy to implement in an existing finite element code because the local numerical treatment of substructures and fluid subdomains is undifferentiated. Test cases are then presented for axisymmetric geometries. Numerical results tend to prove the validity and the efficiency of the proposed method.

The Application of Structural Dynamic Optimization for the Actual Machine U sing Sensitive Analysis Techniques (감도해석기법을 이용한 구조물의 진동특성 최적화 수법의 실제 기계에의 응용)

  • ;長松 昭男
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.51-57
    • /
    • 1992
  • Authors had analyzed the Press machine's vibrational characteristics by Substructure Synthesis Method. This paper discribes the structural Dynamic Optimization for the machine using Sensitive Analysis Method. The substructure synthesis method and sensitive analysis methods are used for the vibration analysis and structural modification. The results obtained are as follows ; 1. The tooling precision of the press machine is ruled by the bending vibration of the slide. 2. The structural Modification Method for minimizing impact responses is proposed, and modal analysis and sensitive analysis method are introduced to solve it. 3. The impact responses of running machine were reduced to 40% of the unmodified machine by using the proposed method.

  • PDF

A Study on Modal Analysis of a Large Structural System with Contribution Factor Analysis of Substructures (부분구조의 기여도 분석을 통한 대형구조물의 해석에 관한 연구)

  • Cho, Ean-Soo;Baik, Serl;Yim, Hong-Jae;Kim, Hyo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.341-348
    • /
    • 2001
  • In this study, a method is presented to find out a relationship between modes of a substructure and those of the system structure. Superelement analysis is performed for a full vehicle system, where the bus is partitioned by six parts. In this study, Modal Assurance Criteria(MAC) which is to represent the correlation between two mode shapes is used to investigate the contribution factor of each substructure for the full system. The proposed participation factor can be used for design of substructures to meet the design target of the total structural system.

  • PDF

The Improvement Method of Railway Roadbed (철도노반의 개량방법)

  • Sim Jae-Bum
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.621-626
    • /
    • 2005
  • A major part of permanent way maintenance effort is justified by inadequacies in the track substructure and in particular in drainage conditions, which need to be put right across the entire network. In most cases nowadays, improvements of the substructure can be carried out on rail to a high standard of quality. However, this entails substantial movements of material for the removal of spoil and provision of new material. In the future, recycling of old material on site, and use of geosynthetics, will be necessary to help considerably reduce this volume.

  • PDF

On a Substructure Synthesis Having Non-Matching Nodes (비부합 절점으로 이루어진 구조물의 합성과 재해석)

  • 정의일;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.155-160
    • /
    • 2001
  • Actual engineering structure is frequently very complex, and parts of structure are designed independently by different engineers. Also each structure contains so many degree of freedom. For these reason, methods have been developed which permits the structure to be divided into components or substructures, with analysis being done on a small substructure in order to obtain a full structural system. In such case, because of different mesh size among finite element model (FEM) or different matching points among FEM models and experimentally obtained models, their interfacing points may be non-matching. Solving this non-matching problem is useful to other application such as structural dynamic modification or model updating. In this work, virtual node concept is introduced. Lagrange multipliers are used to enforce the interface compatibility constraint, and interface displacement is approximated by polynomial presentation. The governing equation of whole structure is derived using hybrid variational principle. The eigenvalue of whole structure are calculated using the determinant search method. The number of degree of freedom in the eigenvalue problem can be drastically reduced to just the number of interface degree of freedom. Some numerical simulation is performed to show usefulness of synthesis method.

  • PDF