• Title/Summary/Keyword: substrate moisture content

Search Result 81, Processing Time 0.022 seconds

Effect of Water-Containing Conditions on Concrete Substrates on Defects of Polyurethane-based Waterproofing Materials (콘크리트 바탕면의 함수조건이 폴리 우레탄계 방수재 하자에 미치는 영향)

  • Lee, Gun-Cheol;Kim, Jae-Yeob;Kim, Young-Min;Hong, Sung-Rok;Kim, Young-Sam;Shin, Hong-Chol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • This study is to analyze the cause of the defects in polyurethane waterproofing, a material commonly used on the roof of buildings, and to determine if it has a relation with the curing conditions of humidity and temperature and the moisture content of the base structure. As a result, it was confirmed that the waterproofing coating did not adhere when the moisture content of the base plate was 10% or more. When the temperature and humidity conditions were 20℃ and 80%RH, none of the properties deteriorate but when the temperature was 40℃, 60%RH, air bubbles were formed on the surface, and at 40℃ and 80%RH, the basic properties of the dry coating film were less than the KS F 3211 performance standard.

Design and Implementation of irrigation management embedded system controlling substrate moisture directly (배지수분 직접제어에 의한 급액관리 임베디드 시스템 설계 및 구현)

  • Lee, Han-Kwon;Byun, Young-Ki;Lee, Seung-Hyuk;Pack, Hyun-Ok;Cho, Tae-Kyung;Kim, Young-Shik;Park, Byoung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.188-194
    • /
    • 2006
  • Since the late 1920's possibility of commercial hydroponics was testified practically. Hydroponics is used as environmentally friendly agriculture production system recently with high effectiveness. Now that existing irrigation control systems such as time control or solar radiation control cannot satisfy stable water content in root substrates, the needs for new irrigation system keep increasing. In this paper, we proposed environmentally friendly automatic irrigation management system by employing automation system based on electronic control system, which could solve problems based on manual irrigation management system. In addition, it suggested to be applied to any crops and will be able to overcome existing limit in irrigation by measuring the water content of root substrate in realtime.

  • PDF

Effects of Moisture and a Saponin-based Surfactant during Barley Processing on Growth Performance and Carcass Quality of Feedlot Steers and on In vitro Ruminal Fermentation

  • Wang, Y.;Gibb, D.;Greer, D.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.12
    • /
    • pp.1690-1698
    • /
    • 2011
  • Feedlot and in vitro ruminal experiments were conducted to assess the effects of saponin-containing surfactant applied during tempering of barley grain on cattle growth performance and on ruminal fermentation. In the feedlot experiment, treatments with three barley grain/barley silage based diets were prepared using barley grain at 7.7% moisture (dry, D), after tempering to 18% moisture (M), or after tempering with a saponin-based surfactant included at 60 ml/t (MS). Each treatment was rolled at settings determined previously to yield optimally processed barley. A total of 180 newly weaned British${\times}$Charolais steers were fed three diets in 18 pens for a 63-d backgrounding period and 91-d finishing period to determine feed intake, growth rate and feed efficiency. Cattle were slaughtered at the end of the experiment to measure the carcass characteristics. Tempering reduced (p<0.001) volume weight and processing index, but processing characteristics were similar between MS and M. Tempering increased (p<0.05) growth during backgrounding only, compared with D, but did not affect feed intake in either phase. During backgrounding, feed efficiency was improved with tempering, but during finishing and overall this response was only observed with the surfactant. Tempering did not affect carcass weight, fat content or meat yield. Surfactant doubled the proportion of carcasses grading AAA. In the in vitro experiment, barley (500 mg; ground to <1.0 mm or steam-rolled) was incubated in buffered ruminal fluid (40 ml) without or with surfactant up to 20 ${\mu}l/g$ DM substrate for 24 h. Surfactant increased (p<0.05) apparent DM disappearance and starch digestibility but reduced productions of gas and the volatile fatty acid and acetate:propionate ratio, irrespective of barley particle size. Compared with feeding diets prepared with non-tempered barley, tempering with surfactant increased the feed efficiency of feedlot steers. This may have arisen from alteration in processing characteristics of barley grain by surfactant rather than its direct effect on rumen microbial fermentation.

Producibility of Aflatoxin by Aspergillus parasiticus in Barley and Their Radiosensitivity (Aspergillus parasiticus에 의한 보리의 Aflatoxin 생성(生成)과 감마선(線)의 영향(影響))

  • Chang, Hak-Gil;Markakis, Pericles
    • The Korean Journal of Mycology
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 1981
  • The effect of gamma irradiation on production and accumulation of aflatoxin on natural substrate (barley) by Aspergillus parasiticus NRRL 2999 has been studied in some detail. Gamma irradiation at five doses, 0, 50, 100, 200 and 400 Krad was applied to the grain either soon after moisture equilibration (3 days after inoculation) or 10 days later (13 days after inoculation). And the results were as in the followings. 1. Increase in moisture content from 17% to 25% greatly increased the aflatoxin concentration, especially at zero irradiation dose. 2. Prolongation of the incubation period prior to irradiation from 3 to 13 days resulted in greater accumulation of aflatoxin. 3. Two hundreds Krad applied 13 days after inoculation on barley stored at 25% moisture (100% RH) and $25^{\circ}C$ led to higher aflatoxin production than 100 Krad or even 50 Krad. 4. The relative proportion of the principal aflatoxins in relation to irradiation showed that aflatoxin G was elaborated at a significantly higher rate than aflatoxin B.

  • PDF

Fermentation of Waste Woody Biomass for the Production of Bioenergy (바이오에너지생산을 위한 목질계 폐바이오매스의 발효)

  • Cho, Nam-Seok;Choi, Tae-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.147-158
    • /
    • 2008
  • In this study, fermentation characteristics of waste agricultural and forest biomass for production of heat energy were focused to be used in agricultural farm households. The purpose of this study was focused on seeking practical utilization of agricultural and forest biomass wastes in agricultural farm households in the form of thermal energy by means of simple fermentation process. Fermentation process was performed in terms of different raw-materials and their mixture with different ratios. Urea, lime, and bioaids were added as fermenting aids. Moisture contents of fermenting substrates were adjusted to 55~65%. In order to optimize the fermentation process various factors, such as raw-materials, moisture contents, amount of fermenting aids, and practical measurement of hot-water temperature during fermentation were carefully investigated. The optimum condition of fermenting process were obtained from hardwood only and hardwood: softwood (50 : 50) beds. In case of hardwood only the highest temperature was recorded between 60 to $90^{\circ}C$ the lowest temperature was determined to more or less $40^{\circ}C$ and the average temperature was ranged to $50{\sim}60^{\circ}C$ and this temperature ranges were maintained up to 20~30 days. The optimum amount of additives were estimated to ca. 15 kg of urea, 20 kg of bioaids, and 10 kg of lime for 1 ton of substrate. To reach the highest temperature the optimum moisture content of fermenting substrate was proved to 55% among three moisture content treatments of 45%, 55% and 65%. The temperature of hot-water tank installed in fermenting bed of hardwood : grass (50 : 50) showed very different patterns according to measuring positions. In general, temperatures in the mid- and upper-parts of substrate piling were relative higher than lower and surface parts during 45-day fermentation process. The maximum temperature of fermenting stage was determined to $65^{\circ}C$, minimum temperature, more or less $40^{\circ}C$, and average temperature was $60^{\circ}C$. The water temperature of tank exit was ranged to $33{\sim}48^{\circ}C$ during whole measuring periods. It could be concluded that fermentation process of waste agricultural and forest biomass produces a considerable amounts of heat, averaging about $50{\sim}60^{\circ}C$ for maximum 3 months by using the heat exchanger (HX-helical type).

Evaluation of Hydrophilic Polymer on the Growth of Plants in the Extensive Green Roofs (저관리형 옥상녹화 식물생육을 위한 Hydrophilic polymer의 효용성)

  • Yang, Ji;Yoon, Yong-Han;Ju, Jin-Hee
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.3
    • /
    • pp.357-364
    • /
    • 2014
  • This study aimed to determine effects of the use of water-retention additive, hydrophilic polymer, for extensive green roofs on growth of Juniperus chinensis var. sargentii and Euonymus fortunei 'Emerald and Gold' for woody plants, and Carex kobomugi and Carex pumila for herbaceous plants. Five different contents of hydrophilic polymer including 0% (Control), 1.0%, 2.5%, 5.0%, and 10% (polymer: medium (w/w), dry weight basis) were added to each of the container filed with a 100 kg of growth medium. Ten of plants were transplanted in each of square container ($1m(L){\times}1m(W){\times}0.3m$ (H)) built on the roof platforms in randomized complete block design in the $20^{th}$ of May, 2013. In results, excessively high volumetric soil water content, about 97-98%, was found in the substrate under elevated hydrophilic polymer concentration of at least 2.5%, during the entire growing period. The moisture content of the substrate containing 1.0% of hydrophilic polymer was higher about 20% in the range between 70% and 80%, compared tho that of Control substrate in the range between 50% and 60%, for 27 days after transplanting prior to abundant rainfall, indicating that the application of hydrophilic polymer to the extensive green roof substrate is effective to eliminate drought condition by retaining water in the substrate. Euonymus fortunei 'Emerald and Gold' and Carex kobomugi resulting in higher plant growth with 2.5% than those of the other treatment plants. Juniperus chinensis var. sargentii was observed the highest growth under 1.0% hydrophilic polymer treatement, and Carex pumila was founded the best growth with Control respectively. Plants that grown in both the 1.0% and 2.5% hydrophilic polymer survived all, while the plants that grown in the 5.0% and 10% hydrophilic polymer died after 3 months. These results suggest that advantage of the addition of hydrophilic polymer may be greater in drought-tolerant plants, but the mixture proportion of hydrophilic polymer should be determined according to the different features of the plant species being grown.

Survey of Beauvericin Contamination in Korean Grains by HPLC and the Production of Beauvericin and Enniatin Derivatives by Fusarium oxysporum KFCC 11363P (한국산 곡류의 Becuvericin의 오염도 조사 및 Becuvericin과 Enniatin 유도체 생성조건)

  • Song, Hyuk_hwan;Lee, Hee-Seok;Lee, Chan
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.1
    • /
    • pp.73-79
    • /
    • 2008
  • The productions of beauvericin and enniatins H, I, and MK1688 by Fusarium oxysporum KFCC 11363P were investigated on rice substrate at four temperatures (15, 20, 25, and $30^{\circ}C$) and three moisture contents (10, 20, and 40%). The largest amount of beauvericin ($718.0\;{\mu}g/g$) was produced at $25^{\circ}C$, and maximum levels of enniatin H ($781.9\;{\mu}g/g$), I ($725.8\;{\mu}g/g$), and MK1688 ($425.8\;{\mu}g/g$) were measured by high pressure liquid chromatography (HPLC) at the same temperature. The optimal moisture content for the production of beauvericin and enniatins H, I, and MK1688 was 40%, and the trace amounts of these toxins were observed at 10% moisture content. Sixty five grain samples (n=65) were tested for the monitoring of beauvericin. This mycotoxin was detected in six grain samples including three maize, two barley, and one wheat samples. The highest contamination level of beauvericin was observed in maize sample ($0.23\;{\mu}g/g$).

Physicochemical Properties of Roasted Soybean Flour Bioconverted by Solid-State Fermentation Using Bacillus subtilis and Lactobacillus plantarum

  • Park, Min-Ju;Genera, Thiyam;Lee, Sam-Pin
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.1
    • /
    • pp.36-45
    • /
    • 2012
  • To produce novel cheese-like fermented soybean, the solid-state fermentation of roasted soybean flour (RSF) was performed using 1.0% inoculum Bacillus subtilis HA and Lactobacillus plantarum, with the initial 60% substrate moisture for 10 hr at $42^{\circ}$, resulting in pH 6.5, 0.82% acidity, 3.5% mucilage, 14.3 unit/g protease activity, 7.6 unit/g fibrinolytic activity, 216 mg% tyrosine content and $1.7{\times}10^{10}$ CFU/g of viable cell counts. After the second lactic acid fermentation with 10~30% skim milk powder, the fermented RSF resulted in an increase in acidity with 1.64~1.99%, tyrosine content with 246~308 mg% and protease activity in the range of 5.2~17.5 unit/g and 0.966 water activity. Viable cell counts as probiotics indicated $1.6{\times}10^8$ CFU/g of B. subtilis and $7.3{\times}10^{10}$ CFU/g of L. plantarum. The firmness of the first fermented RSF with 2,491 $g{\cdot}{\o}mm^{-1}$ greatly decreased to 1,533 $g{\cdot}{\o}mm^{-1}$ in the second fermented RSF, although firmness was slightly increased by adding a higher content of skim milk. The consistency of the second fermented RSF also decreased greatly from 55,640 to 3,264~ 3,998 in the presence of 10~30% skim milk. The effective hydrolysis of soy protein and skim milk protein in the fermented RSF was confirmed. Thus, the second fermented RSF with a sour taste and flavor showed similar textural properties to commercial soft cheese.

Development of suitable substrate of Sparassis latifolia for bottle cultivation (꽃송이버섯 병재배 적합 배지 개발)

  • Gwon, Hee-Min;Lee, Yun-Hae;Choi, Jong-In;Jeon, Dae-Hoon;Lee, Yong-seon;Lee, Young-Soon;Kim, Jeong-Han
    • Journal of Mushroom
    • /
    • v.17 no.3
    • /
    • pp.126-131
    • /
    • 2019
  • This study sought to identify the optimum substrate composition for the stable bottle cultivation of Sparassis latifolia. The main substrate was fermented larch sawdust. Six nutrient sources were mixed at a maximum volume ratio of 20%. The fresh weight of fruit body was the highest at 128.5 g for GMSL69033 and 126.6 g for 'Neoul' in the treatments of beet pulp and corn flour in a volume ratio of 15:5. In addition, the total cultivation period was 94 days, which was shorter than that required for other treatments. The selected substrate characteristics were pH 4.7, C:N (carbon to nitrogen) ratio of 106:4, moisture content of 70%, and air filling porosity of 38%. We plan to develop new income items through research on mycelial incubation and fruit body growth conditions.

Strength Development Properties of Latex Modified Concrete For New Concrete Bridge Deck Overlay (신설 콘크리트 교면 덧씌우기를 위한 라텍스 개질 콘크리트의 강도발현 특성)

  • Yun, Kyong-Ku;Kim, Ki-Heoun;Lee, Joo-Hyung;Hong, Chang-Woo;Kim, Dong-Ho
    • International Journal of Highway Engineering
    • /
    • v.3 no.3 s.9
    • /
    • pp.135-146
    • /
    • 2001
  • This study focused on the investigation of compressive and flexural strengths development, and bond strength of latex modified concrete in order to validate the feasibility of application into concrete bridge deck overlay. Pull-out bond test was used for evaluating the bond strength of latex modified concrete to substrate. The main experimental variables were latex-cement ratio, surface preparation and moisture levels. The compressive strength of latex modified concrete decreased slightly and the flexural strength increased as the latex content increased from 5% to 20%. This might be due to the flexibility latex filled in voids and interconnections of hydrated cement and aggregates by a film of latex particles, respectively. In general, increasing the amount of latex will produce concrete with increased tensile and flexural strength and lower modulus of elasticity. Significant improvements in bond strength between new and existing concrete were achieved through the modification of the new concrete bridge deck overlay by latex polymers. The effect of surface preparation on bond of latex modified concrete to conventional concrete were significant at the conditions by sand paper and wire brush. A better bond could be achieved by rough surface rather than smooth. The saturated condition of surface is the most appropriate moisture level among the considered followed by dry condition and wet condition.

  • PDF