• Title/Summary/Keyword: substrate model

Search Result 808, Processing Time 0.027 seconds

Molecular Dynamic Simulation of Nano Indentation and Phase Transformation (분자동역학을 이용한 나노 인덴테이션과 상변화 해석 연구)

  • 김동언;손영기;임성한;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.339-346
    • /
    • 2003
  • Molecular dynamic simulations of nano indentation on single-crystal silicon (100) surface were performed using diamond indentor. Silicon substrate and diamond indentor were modeled diamond structure with Tersoff potential model. Phase transformation of silicon, incipient plastic deformation, change of incident temperature distribution are investigated through the change of potential energy distribution, displacement-load diagram, the change of kinetic energy distribution and displacements of silicon atoms. Phase transformation is highly localized and consists of a high-density region surrounding the tip. Axial load linearly increased according to the indenting depth. Number of atoms with high kinetic energy increased at the interface between substrate and indentor tip.

  • PDF

Effects and Batch Kinetics of Agitation and Aeration on Submerged Cultivation of Ganoderma Iucidum (영지의 액체배양에 미치는 통기.교반의 효과와 동력학적 특성)

  • 이학수;정재현;이신영
    • KSBB Journal
    • /
    • v.16 no.3
    • /
    • pp.307-313
    • /
    • 2001
  • The effects of agitaion and aeration on mycelial growth, exo-polysaccharide (EPS) production, and substrate consumption upon the submerged cultivation of G. lucidum were investigated, and the batch kinetics of the EPS fermentation of G. lucidum were interpreted as function of agitation speed and aeration rate. In a 2.6 L jar fermenter system, the optimum agitation speed and aeration rate for EPS production were determined to be 400 rpm and 1.0 vvm, respectively. The maximum production of EPS obtained was 15 g/L. The logistic model for mycelial growth fitted the experimental data better than that determined by the Monod and the two-thirds power models. The Luedeking-Piret equation adequately modelled the kinetic data obtained for product and substrate.

  • PDF

Carrier Lfetime and Anormal Cnduction Penomena in Silicon Epitaxial Layer-substrate Junction (Epitaxial에 의한 Si epi층의 케리어 수명과 P-N접합의 이상전도현상)

  • 성영권;민남기;김승배
    • 전기의세계
    • /
    • v.26 no.5
    • /
    • pp.83-89
    • /
    • 1977
  • This paper described the minority carrier lifetime in Si epitaxial layer, and also the voltage (V) versus current (I) characteristics of high resistivity Si epitaxial layer0substrate junction. The measured lifetime in Si epi-layer was much shorter than in bulk, and the temperature dependence of lifetime was found to agree well with Shockley-Read model of recombination which applies to high resistivity n-type materials. The V-I curve showed; an ohmic region (I.var.V), a sublinear region (I.var.V$^{1}$2/), a space charge limited current region (I.var.V$^{2}$), and finally a negative resistance region. We investigated these phenomena by the theory of the relaxation semiconductor.

  • PDF

The Behavior of TiN Thin Film Growth According to Substrate Surface Conditions in PECVD Process (모재표면오건에 따른 TiN 박막의 Morphology변화)

  • 노경준;이정일
    • Korean Journal of Crystallography
    • /
    • v.3 no.1
    • /
    • pp.53-66
    • /
    • 1992
  • Extensive research has been perform성 on the property-microstructure-process condition relations of thin films. The various proposed models are mainly based on physical vapor deposition processes. Especially the study on the surface condition of substrates in Zone 1 with low surface mobility has not been sufficient. In this study, therefore, we discussed the mochological changes of TiN films deposited by plusma enhanced chemical vapor deposition process with substrates of different composition and micro-rorghness, and compared it with the Structure Zone Model. We could find out that the growth rate of films increased and micro-grain size decreased with the increase in micro-roughness, but it does not improve the mechanical properties because of many imperfections like voids, micro-cracks, stacking faults, etc. This means that, in these deposition conditions, the increase in shadowing diffect is more effective than the increase in nucleation sites on the growth of films due to the increase in substrate roughness.

  • PDF

A Design for a Modified Circular Slot Antenna with a Fork-like Tuning Stub for UWB Operations

  • Yoon, Joong-Han
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.2
    • /
    • pp.65-70
    • /
    • 2016
  • This paper proposes and experimentally tests a modified circular slot antenna fed by a fork-like tuning stub for ultra-wideband (UWB) operation. The proposed antenna consists of a modified circular slot model and fork-like tuning stub. The proposed antenna is printed on a 34.0 mm × 30.0 mm FR4 substrate with thickness of 1.0 mm and relative permittivity of 4.4. The effect of various parameters of the circular slot and fork-like tuning stub is investigated for UWB operation. The modified circular slot and fork-like tuning stub are fabricated on the substrate to achieve wideband operation and good impedance matching. Experimental results demonstrated that the measured return loss exhibits an acceptable agreement with the simulated return loss and satisfies the -10 dB impedance bandwidth requirement while simultaneously covering the UWB bands. In addition, the proposed antenna shows good radiation characteristics and gains in the UWB bands.

Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermo-mechanical loading using nonlocal strain gradient theory

  • Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.683-693
    • /
    • 2017
  • According to a generalized nonlocal strain gradient theory (NSGT), dynamic modeling and free vibrational analysis of nanoporous inhomogeneous nanoplates is presented. The present model incorporates two scale coefficients to examine vibration behavior of nanoplates much accurately. Porosity-dependent material properties of the nanoplate are defined via a modified power-law function. The nanoplate is resting on a viscoelastic substrate and is subjected to hygro-thermal environment and in-plane linearly varying mechanical loads. The governing equations and related classical and non-classical boundary conditions are derived based on Hamilton's principle. These equations are solved for hinged nanoplates via Galerkin's method. Obtained results show the importance of hygro-thermal loading, viscoelastic medium, in-plane bending load, gradient index, nonlocal parameter, strain gradient parameter and porosities on vibrational characteristics of size-dependent FG nanoplates.

An Embedded Wide-Band Spiral Inductor for 10 Gb/s Optical Transceiver Applications

  • Kwon, Young-Mi;Kim, Dong-Churl;Shim, Jong-In
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.49-51
    • /
    • 2008
  • The wide-band spiral inductor to be monolithically integrated on the AlN substrate as a choking inductor for a compact 10 Gb/s optical transmitter applications is investigated. In order to reduce the parasitic capacitance limiting the choking bandwidth, the AlN substrate is partially etched away, which is analyzed by using an equivalent circuit model. The measured $S_{21}$ transmission response of the fabricated inductor is suppressed as low as -10 dB in the frequency range of 5 to 16 GHz.

Circuit-Level Reliability Simulation and Its Applications (회로 레벨의 신뢰성 시뮬레이션 및 그 응용)

  • 천병식;최창훈;김경호
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.1
    • /
    • pp.93-102
    • /
    • 1994
  • This paper, presents SECRET(SEC REliability Tool), which predicts reliability problems related to the hot-carrier and electromigration effects on the submicron MOSFETs and interconnections. To simulate DC and AC lifetime for hot-carrier damaged devices, we have developed an accurate substrate current model with the geometric sensitivity, which has been verified over the wide ranges of transistor geometries. A guideline can be provided to design hot-carrier resistant circuits by the analysis of HOREL(HOT-carrier RFsistant Logic) effect, and circuit degradation with respect to physical parameter degradation such as the threshold voltage and the mobility can also be expected. In SECRET, DC and AC MTTF values of metal lines are calculated based on lossy transmission line analysis, and parasitic resistances, inductances and capacitances of metal lines are accurately considered when they operate in the condition of high speed. Also, circuit-level reliability simulation can be applied to the determination of metal line width and-that of optimal capacitor size in substrate bias generation circuit. Experimental results obtained from the several real circuits show that SECERT is very useful to estimate and analyze reliability problems.

  • PDF

Effect of Slurry Property on Preparation of Zirconia Film in Electrophoretic Deposition (전착법에서 용액특성이 지르코니아 막형성에 미치는 영향)

  • 김상우;이병호;손용배;송휴섭
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.991-996
    • /
    • 1999
  • Effect of solution property on the weight varation and microstructural change of film was studied by electrophoretic deposition in order to obtain a homogeneous and dense zirconia film. As a result of weight kinetics of film which obtained in alcohol or aqueous solution having different polarity experimental data showed large deviation from theoretical ones calculated by Zhang's kinetic model. It had been shown that the weight affecting factors was largely dependent on properties other than dielectric constant and viscosity of solvent zeta potential appiled field and time. In initial stage a main factor of the drastic weight increase was the capillary drag of porous substrate. The cause of weight decrease with time in aqueous solution after 300 s was attributed to the defect of film by sagging and electrolytic reaction. The electrolyte film which prepared in alcohol solution with good wetting for substrate had better homogeneous and dense microstructure than one in aqueous solution with high surface tension.

  • PDF

Measurement of Material Property of Thin Film and Prediction of Residual Stress using Laser Scanning Method (레이저 주사법을 이용한 박막 물성 측정 및 잔류응력 예측)

  • Lee, Sang-Soon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.49-53
    • /
    • 2004
  • Polymeric materials are widely used in the electronic industry as a common dielectric material or adhesive. The polymeric layer coated on Si substrate can be subjected to thermal stresses due to difference in thermal expansion coefficients. The mismatch in thermal properties between the polymeric layer and the substrate results in significant residual stresses. In this study, the thermal deformation is measured by a curvature measurement method using laser scanning, and the elastic modulus is calculated by an analytic model.

  • PDF