• Title/Summary/Keyword: substrate material

Search Result 3,171, Processing Time 0.027 seconds

Structural, electrical and optical properties of Al-doped ZnO thin films by pulsed DC magnetron sputtering

  • Ko, Hyung-Duk;Lee, Choong-Sun;Kim, Ki-Chul;Lee, Jae-Seok;Tai, Weon-Pil;Suh, Su-Jeong;Kim, Young-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.4
    • /
    • pp.145-150
    • /
    • 2004
  • We have investigated the structural, electrical and optical properties of Al-doped ZnO (AZO) thin films grown on glass substrate by pulsed DC magnetron sputtering as functions of pulse frequency and substrate temperature. A highly c-axis oriented AZO thin film is grown in perpendicular to the substrate when pulse frequency of 30 kHz and substrate temperature of $400^{\circ}C$ was applied. Under this optimized growth condition, the resistivity of AZO thin films exhibited $7.40\times 10^{-4}\Omega \textrm{cm}$. This indicated that the decrease of film resistivity resulted from the improvement of film crystallinity. The optical transmittance spectra of the films showed a very high transmittance of 85∼90 % in the visible wavelength region and exhibited the absorption edge of about 350 nm. The results show the potential application for transparent conductivity oxide (TCO) thin films.

Characteristics of a-IGZO TFT by the material of substrate and temperature (Substrate 물질에 따른 a-IGZO TFT의 온도 특성)

  • Lee, Myeong-Eon;Jeong, Han-Wook;Park, Hyun-Ho;Choi, Byung-Duk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.148-148
    • /
    • 2010
  • Measuring the a-IGZO TFTs with various temperatures was found to induce a threshold voltage shift and a change of the subthreshold gate voltage swing. Characteristic change is dependant on a material of the substrate at the temperature from $20^{\circ}C$ to $100^{\circ}C$. The threshold voltage was shifted to the left from -2.7V to -61V on SiO2/galss. But, as the temperature increases form $20^{\circ}C$ to $100^{\circ}C$. the threshold voltage was shifted to the right from 0.85V to 2.45V.

  • PDF

Optical Properties of ZnO Films Grown by Pulsed Laser Deposition (펄스 레이저 증착법으로 성장된 ZnO 막의 광학 특성)

  • Cho, Shin-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.113-114
    • /
    • 2005
  • We present the effect of substrate temperature on the structural and optical properties of ZnO films grown on sapphire substrate by pulsed laser deposition. Growing at higher substrate temperature results in an increase in the surface roughness. The optimum c-axis orientation of the ZnO films occurs at the substrate temperature of 700$^{\circ}C$ The decay time shows a rapid increase in the substrate temperature from 400$^{\circ}C$ to 500$^{\circ}C$ and falls down gradually as the substrate temperature is approached to 700$^{\circ}C$.

  • PDF

Structural Properties of (Ba,Sr)TiO$_3$ Thin Films with Substrate Temperature (기판온도에 따른 (Ba,Sr)TiO$_3$ 박막의 구조적 특성)

  • 이상철;임성수;정장호;배선기;이영희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.649-652
    • /
    • 1999
  • The (Ba, Sr)TiO$_3$(BST) thin films were fabricated on Pt/Ti/SiO$_2$/Si substrate by RF sputtering technique. The structural properties of the BST thin films were investigated with substrate temperature by XRD, SEM, EDS and AES depth profils. Increasing the substrate temperature, barium multi titanate phases were decreased. The BST thin film had a structure of perovskite type, and had peaks of (100), (200) at the substrate temperature of 50$0^{\circ}C$. When the BST thin films were deposited at the substrate temperature of 50$0^{\circ}C$, the composition ratio of Ba/sr was 52/48.

  • PDF

Study on the Nonlinear Characteristic Effects of Dielectric on Warpage of Flip Chip BGA Substrate

  • Cho, Seunghyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.33-38
    • /
    • 2013
  • In this study, both a finite element analysis and an experimental analysis are executed to investigate the mechanical characteristics of dielectric material effects on warpage. Also, viscoelastic material properties are measured by DMA and are considered in warpage simulation. A finite element analysis is done by using both thermal elastic analysis and a thermo-viscoelastic analysis to predict the nonlinear effects. For experimental study, specimens warpage of non-symmetric structure with body size of $22.5{\times}22.5$ mm, $37.5{\times}37.5$ mm and $42.5{\times}42.5$ mm are measured under the reflow temperature condition. From the analysis results, experimental warpage is not similar to FEA results using thermal elastic analysis but similar to FEA results using thermo-viscoelastic analysis. Also, its effect on substrate warpage is increased as core thickness is decreased and body size is getting larger. These FEA and the experimental results show that the nonlinear characteristics of dielectric material play an important role on substrate warpage. Therefore, it is strongly recommended that non-linear behavior characteristics of a dielectric material should be considered to control warpage of FCBGA substrate under conditions of geometry, structure and manufacturing process and so on.

A Study on the Change of Si Thin Film Characteristics to Find Design Rules for Sputtering Equipment (스퍼터 장비의 설계 룰을 찾기 위한 Si박막 특성 변화 연구)

  • Kim, Bo-Young;Kang, Seo Ik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.100-105
    • /
    • 2020
  • Recently, as display and semiconductor devices have been miniaturized and highly integrated, there is a demand for optimization of the structural characteristics of the thin film accordingly. The sputtering device has the advantage of stably obtaining a desired thin film depending on the material selected for the target. However, due to the structural characteristics of the sputtering equipment, the structural characteristics of the film may be different depending on the incidence angle of the sputtering target material to the substrate. In this study, the characteristics of the thin film material according to the scattering angle of the target material and the incidence position of the substrate were studied to find the optimization design rule of the sputtering equipment. To this end, a Si thin film of 1 ㎛ or less was deposited on the Si(100) substrate, and then the microstructure, reflectance, surface roughness, and thin film crystallinity of the thin film formed for each substrate location were investigated. As a result of the study, it was found that as the sputter scattering angle increased and the substrate incident angle decreased, the gap energy along with the surface structure of the thin film increased from 1.47 eV to 1.63 eV, gradually changing to a non-conductive tendency.

Effectiveness of bond strength between normal concrete as substrate and latex-modified sand concrete reinforced with sisal fibers as a repair material

  • Oday Z. Jaradat;Karima Gadri;Bassam A. Tayeh;Ahmed M. Maglad;Abdelhamid Guettala
    • Advances in concrete construction
    • /
    • v.15 no.6
    • /
    • pp.431-444
    • /
    • 2023
  • This study investigated the use of latex-modified sand concrete reinforced with sisal fibers (LMSC) as a repair material. Notably, no prior research has explored the application of LMSC for this purpose. This paper examines the interface bond strength and the type of failure between LMSC as a repair material and the normal concrete (NC) substrate utilising four different surfaces: without surface preparation as a reference (SR), hand hammer (HA), sandblasted (SB), and grooved (GR). The bond strength was measured by bi-surface shear, splitting tensile, and pull-off strength tests at 7, 28, and 90 days. Scanning electron microscopy analysis was also performed to study the microstructure of the interface between the normal concrete substrate and the latex-modified sand concrete reinforced with sisal fibers. The results of this study indicate that LMSC has bonding strength with NC, especially for HR and SB surfaces with high roughness. Therefore, substrate NC surface roughness is essential in increasing the bonding strength and adhesion. Eventually, The LMSC has the potential to repair and rehabilitate concrete structures.

Vibration based energy harvesting performance of magneto-electro-elastic beams reinforced with carbon nanotubes

  • Arjun Siddharth Mangalasseri;Vinyas Mahesh;Sriram Mukunda;Vishwas Mahesh;Sathiskumar A Ponnusami;Dineshkumar Harursampath;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.14 no.1
    • /
    • pp.27-43
    • /
    • 2023
  • This article investigates the energy harvesting characteristics of a magneto-electro-elastic (MEE) cantilever beam reinforced with carbon nanotubes (CNT) under transverse vibration. To this end, the well-known lumped parameter model is used to represent the coupled multiphysics problem mathematically. The proposed system consists of the MEE-CNT layer on top and an inactive substrate layer at the bottom. The substrate is considered to be made of either an isotropic or composite material. Basic laws such as Gauss's Law, Newton's Law and Faraday's Law are used to arrive at the governing equations. Surface electrodes across the beam are used to harvest the electric potential produced, together with a wound coil, for the generated magnetic potential. The influence of various distributions of the CNT and its volume fraction, substrate material, length-to-thickness ratio, and thickness ratio of substrate to MEE layer on the energy harvesting behaviour is thoroughly discussed. Further, the effect of external resistances and changes in substrate material on the response is analysed and reported. The article aims to explore smart material-based energy harvesting systems, focusing on their behaviour when reinforced with carbon nanotubes. The results of this study may lead to an improved understanding of the design and analysis of CNT-based smart structures.

Characteristics of Cladding Process with High Viscosity Mixing Powder Using $CO_2$ Laser ($CO_2$ 레이저를 이용한 고점성 혼합분말의 클래딩 가공 특성)

  • 이영곤;전병철;오동수;서병권;김재도
    • Proceedings of the KWS Conference
    • /
    • 2000.10a
    • /
    • pp.256-259
    • /
    • 2000
  • High viscosity mixing powder is a very useful material for laser cladding. This material has a high viscosity so that it can be sticked to substrate. Therefore, Laser cladding can be performed on a curved or slope surface. Laser cladding can be easily performed with the material instead of wire that is difficult to be manufactured in some case. In this experiment, it was used a high viscosity mixing powder which consists of a high temperature flux and a bronze powder. And AC2B alloy material was used as a substrate. Flux prevents the clad layer from being oxidized and increases bonding property between substrate and cladding material. It makes possible to laser cladding at low level energy.

  • PDF

High temperature poly-Si thin film transistors on a molybdenum substrate

  • Kim, Do-Young;Gangopadhyay, Utpal;Park, Joong-Hyun;Ko, Jae-Kyung;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.523-525
    • /
    • 2002
  • The poly-Si thin film can be used in high mobility active matrix liquid-crystal display (AMLCD) and system on panel (SOP). In this paper, poly-Si thin films were grown by novel high temperature process on the molybdenum (Mo) substrate. By applying a high current above 48A on a Mo substrate. We obtained an improved crystalline Si films with the crystallinity over 80%. We exhibit the properties of structural and electrical properties of high temperature poly-Si thin film transistor on the Mo substrates.

  • PDF