• Title/Summary/Keyword: substrate integrated waveguide

Search Result 74, Processing Time 0.024 seconds

Measured Return Loss and Predicted Interference Level of PCB Integrated Filtering Antenna at Millimeter-Wave

  • Lee Jae-Wook;Kim Bong-Soo;Song Myung-Sun
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.3
    • /
    • pp.140-145
    • /
    • 2005
  • In this paper, an experimental investigation for return loss and a software-based prediction for interference level of single-packaged filtering antenna composed of dielectric waveguide filter and PCB(Printed Circuit Board) slot antenna in transceiver module have been carried out with several different feeding structures in millimeter-wave regime. The implementation and embedding method of the existing air-filled waveguide filters working at millimeter-wave frequency on general PCB substrate have been described. In a view of the implementation of each components, the dielectric waveguide embedded in PCB and LTCC(Low Temparature Co-fired Ceramic) substrates has employed the via fences as a replacement with side walls and common ground plane to prevent energy leakage. The characteristics of several prototypes of filtering antenna embedded in PCB substrate are considered by comparing the wideband and transmission characteristics as a function of bent angle of transmission line connecting two components. In addition, as an essential to the packaging of transceiver module working at millimeter-wave, miniaturization technology maintaining the performances of independent components and the important problems caused by integrating and connecting the different components in different layers are described in this paper.

High Efficiency Active Phased Array Antenna Based on Substrate Integrated Waveguide (기판집적 도파관(SIW)을 기반으로 하는 고효율 능동 위상 배열안테나)

  • Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.227-247
    • /
    • 2015
  • An X-band $8{\times}16$ dual-polarized active phased array antenna system has been implemented based on the substrate integrated waveguide(SIW) technology having low propagation loss, complete EM shielding, and high power handling characteristics. Compared with the microstrip case, 1 dB less is the measured insertion loss(0.65 dB) of the 16-way SIW power distribution network and doubled(3 dB improved) is the measured radiation efficiency(73 %) of the SIW sub-array($1{\times}16$) antenna element. These significant improvements of the power division loss and the radiation efficiency using the SIW, save more than 30 % of the total power consumption, in the active phased array antenna systems, through substantial reduction of the maximum output power(P1 dB) of the high power amplifiers. Using the X-band $8{\times}16$ dual-polarized active phased array antenna system fabricated by the SIW technology, the main radiation beam has been steered by 0, 5, 9, and 18 degrees in the accuracy of 2 degree maximum deviation by simply generating the theoretical control vectors. Performing thermal cycle and vacuum tests, we have found that the SIW array antenna system be eligible for the space environment qualification. We expect that the high efficiency SIW array antenna system be very effective for high performance radar systems, massive MIMO for 5G mobile systems, and various millimeter-wave systems(60 GHz WPAN, 77 GHz automotive radars, high speed digital transmission systems).

Suppression of leakage and crosstalk in millimeter-wave flip-chip packages (밀리미터파 플립 칩 실장구조에서의 누설파와 간섭효과 억제방법)

  • 이계안;이해영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.4
    • /
    • pp.40-46
    • /
    • 1998
  • Leakage phenomena of flip-chip structures on common GaAs and alumina main substrates are characterized using the spectral domain approach to reduce the possible chip-to-chip crosstald and transmission resonance. We have found taht the longitudinal section magnetic mode is dominant for the coplanar waveguide leakage andthe leakage can be suppreassed by properly managing the gap height and the main substrate thickness in addition to the dielectric constant. These calculation results will be helpful for designing and flip-chip packagaing of high-frequency integrated circuits.

  • PDF

Fabrication of a $LiNbO_3$ Single-Mode Optical Waveguide ($LiNbO_3$ 단일모드 광도파관의 제작)

  • 박동철
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.16 no.2
    • /
    • pp.15-18
    • /
    • 1979
  • Deposited film of a transition metal, Ti was diffused into LiNbO3 crystals to form integrated optical waveguides. By suppressing L O out -diffusion, single-mode waveguides could be constructed. Measurements on characteristics were performed by using the prise coupling technique and a He-Ne laser. ( λ = 0.6328 $\mu$m)

  • PDF

Analysis of Coupled Mode Theory for Design of Coupler Between Optical Fiber And Grating Assisted Waveguide (광섬유와 격자구조 도파로 결합기 설계를 위한 결합 모드 이론 분석)

  • Heo, Hyung-Jun;Kim, Sang-In
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.561-568
    • /
    • 2017
  • In order to effectively utilize the Coarse Wavelength Division Multiplexing(CWDM) technology in optical integrated devices, a design of a wavelength selective coupler structure between an optical fiber and an optical waveguide in a flat substrate is can be considered. In this paper, we consider the coupling between a silicon waveguide with an air trench and a single mode fiber. We investigated the tendency of coupling efficiency and its limitations according to the grating depth. For this purpose, the coupling efficiency of coupler structure designed through modeling based on coupled mode theory is predicted and quantitatively compared with simulation results using finite element method.

Recent Progress and Prospect of Luminescent Solar Concentrator (발광형 태양광 집광기 최신 연구 동향)

  • Song, Hyung-Jun
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.4
    • /
    • pp.25-39
    • /
    • 2019
  • Luminescent solar concentrator (LSC), consisting of luminophore included glass or substrate with edge-mounted photovoltaic cell, is semi-transparent, energy harvesting devices. The luminophore absorbs incident solar light and re-emit photons, while the waveguide plate allows re-emitted photons to reach edge or bottom mounted photovoltaic cells with reduced losses. If the area of LSC is much larger than that of photovoltaic cell, this system can effectively concentrate solar light. In order to improve the performance of LSC, new materials and optical structures have been suggested by many research groups. For decreasing re-abosprion losses, it is essential to minimize the overlap between absorption and photoluminescence solar spectrum of luminophoroe. Moreover, the combination of selective top reflector and reflective optical cavity structure significantly boosts the waveguide efficiency in the LSC. As a result of many efforts, commercially available LSCs have been demonstrated and verified in the outdoor. Also, it is expected to generate electricity in buildings by replacing conventional glass to LSCs.

2×2Ti:LiNbO3 Integrated Optical Add/Drop Multiplexers utilizing Strain-Optic Effect (스트레인광학효과를 이용한 2×2Ti:LiNbO3 삽입/분기 집적광학 멀티플렉서)

  • Jung, Hong-Sik;Choi, Yong-Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.430-436
    • /
    • 2006
  • Polarization-independent $Ti:LiNbO_3\;2{\times}2$ optical add/drop multiplexer for the 1550nm wavelength region is fabricated. The device consists of two input waveguides, two polarization beam splitters. two polarization conversion/electrooptic tuning waveguide sections, and two output waveguides. The single mode channel waveguides for both TE and TM polarizations are fabricated on a x-cut $Ti:LiNbO_3$substrate by Ti diffusion. Spectral section is based on phase-matched polarization conversion due to shear strain induced by a thick $SiO_2$ grating overlay film. An applied voltage tunes the device by changing the waveguide birefringence, hence the optical wavelength at which most efficient polarization conversion occurs. Tuning rate of 0.094nm/V with a maximum range of 17nm has been obtained. The nearest side-lobe is about 8.2dB. The FWHM is 3.72nm.

Highly Miniaturized On-Chip $180^{\circ}$ Hybrid Employing Periodic Ground Strip Structure for Application to Silicon RFIC

  • Yun, Young
    • ETRI Journal
    • /
    • v.33 no.1
    • /
    • pp.13-17
    • /
    • 2011
  • A highly miniaturized on-chip $180^{\circ}$ hybrid employing periodic ground strip structure (PGSS) was realized on a silicon radio frequency integrated circuit. The PGSS was placed at the interface between $SiO_2$ film and silicon substrate, and it was electrically connected to top-side ground planes through the contacts. Owing to the short wavelength characteristic of the transmission line employing the PGSS, the on-chip $180^{\circ}$ hybrid was highly miniaturized. Concretely, the on-chip $180^{\circ}$ hybrid exhibited good radio frequency performances from 37 GHz to 55 GHz, and it was 0.325 $mm^2$, which is 19.3% of a conventional $180^{\circ}$ hybrid. The miniaturization technique proposed in this work can be also used in other fields including compound semiconducting devices, such as high electron mobility transistors, diamond field effect transistors, and light emitting diodes.

A Study on the Fabrication LiNbO3 Optical Waveguide (LiNbO3 광도파로 제작에 관한 연구)

  • Kim, Sun-Yeob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6221-6226
    • /
    • 2015
  • In this paper, waveguide analysis was interpreted as an optical waveguide using the feedback perturbation method simple and easy to apply compared to the analysis method, while the other almost identical to the numerical calculation method. In addition, efficient coupling with an optical transmission line of optical fiber and the waveguide form the thin film of different functional elements is required in order to achieve the full optical communication system. However, problems arise, such as the light field (field) and the decrease of the access efficiency due to inconsistency in the distribution characteristics of the connection surface by the difference in size of the cross section thereof when connecting the optical fiber and the waveguide directly to the combination of a thin film. Therefore propose a new type of connector structure to increase the efficiency of the connection when connecting the optical fiber waveguide and the thin film was analyzed by applying a coupled mode theory, the binding efficiency of the modified contactor. And by diffusing Ti on the $LiNbO_3$ substrate and a wide range of applications in the manufacture of integrated optical material made of a current low-loss Ti: $LiNbO_3$ optical waveguide and making the Y-branch waveguide, and the properties were confirmed.

Quasi-Yagi Antenna for UHF RFID and GNSS Bands (UHF RFID 및 GNSS 대역용 준-야기 안테나)

  • Lee, Jong-Ig;Kim, Gun-Kyun;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.57-58
    • /
    • 2018
  • In this paper, we studied a design method for a quasi-Yagi antenna operating over a broad bandwidth covering the UHF RFID(902-928 MHz) and GNSS(1,164-1.605 MHz). The proposed antenna is composed of three elements(dipole, reflector, and director) and fed by a coplanar waveguide. To reduce its size, a balun is integrated inside the antenna, and the ends of both the dipole and reflector are bent. Broadband impedance matching was obtained by placing the director near to the dipole and loading a chip capacitor inside the antenna. The antenna, designed through simulations, was fabricated on an FR4 substrate with 0.8 mm thickness. The experiment results for the antenna characteristics agree very well with the simulation.

  • PDF