• Title/Summary/Keyword: substrate effects

Search Result 2,024, Processing Time 0.031 seconds

An Numerical Study on the Flow Uniformity and Pressure Drop in Dual Monolith Catalytic Converter during the Rapid Acceleration/Deceleration Driving (급가감속 운전에 따른 듀얼 모노리스형 촉매변환기 내의 유동 균일도와 압력 강하에 관한 수치적 연구)

  • Kim, Young-Deuk;Jeong, Soo-Jin;Kim, Woo-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.63-71
    • /
    • 2007
  • The conversion efficiency, durability and pressure drop of the automotive exhaust catalysts are dependent on the flow distribution within the substrate. Conventional porous medium approaches assuming monolith resistance based on the one-dimensional laminar flow for simulating the flow through the automotive exhaust catalysts over-predict the flow uniformity in the monolith. In this study, additional pressure loss is also considered by accounting for entrance effects due to the oblique flow incident on the front face of monolith as a consequence of flow separation and recirculation within the diffuser. The incorporation of an additional pressure loss improves the predictions for the maximum flow velocity within the substrate. An numerical study has also been conducted for the three-dimensional unsteady incompressible non-reacting flow inside various dual-monolith catalytic converters for the rapid acceleration/deceleration driving.

Utilization of Ruminal Epithelial Cells by Ruminococcus albus, with or without Rumen Protozoa, and Its Effect on Bacterial Growth

  • Goto, M.;Karita, S.;Yahaya, M.S.;Kim, W.;Nakayama, E.;Yamada, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.44-49
    • /
    • 2003
  • Effects of supplementation with ruminal epithelial cells on fiber-degrading activity and cell growth of Ruminococcus albus (R. albus, strain 7) was tested using a basal substrate of rice straw and formulated concentrate. Cultures of R. albus alone and R. albus with rumen protozoa were grown at $39^{\circ}C$ for 48 h with an 8.4% crude protein (CP) substrate, 33% of the CP supplemented with either ruminal epithelial cells or defatted soybean meal. The ruminal epithelial cells had lower amounts of rumen soluble and degradable protein fractions as compared to defatted soybean meal, as determined by an enzymatic method, and the same was found with amino acid composition of protein hydrolysates. Ruminal epithelial cells were directly utilized by the R. albus, and resulted in greater growth of cell-wall free bacteria compared to defatted soybean meal. The effect of epithelial cells on bacterial growth was enhanced by the presence of rumen protozoa. In consistency with cultures of R. albus and R. albus with rumen protozoa, fermentative parameters such as dry matter degradability and total volatile fatty acid did not differ between supplementation with ruminal epithelial cells or defatted soybean meal.

Optimized Synthesis Conditions of Polyethersulfone Support Layer for Enhanced Water Flux for Thin Film Composite Membrane

  • Son, Moon;Choi, Hyeongyu;Liu, Lei;Park, Hosik;Choi, Heechul
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.339-344
    • /
    • 2014
  • Different types of polyethersulfone (PES) support layer for a thin film composite (TFC) membrane were synthesized under various synthesis conditions using the phase inversion method to study the combined effects of substrate, adhesive, and pore former. The permeability, selectivity, pore structure, and morphology of the prepared membranes were analyzed to evaluate the membrane performance. The combined use of substrate, adhesive, and pore former produced a thinner dense top layer, with more straight finger-like pores. The pure water permeation (PWP) of the optimized PES membrane was $27.42L/m^2hr$ (LMH), whereas that of bare PES membrane was 3.24 LMH. Moreover, membrane selectivity, represented as divalent ion ($CaSO_4$) rejection, was not sacrificed under the synthesis conditions, which produced the dramatically enhanced PWP. The high permeability and selectivity of the PES membrane produced under the optimized synthesis conditions suggest that it can be utilized as a potential support layer for TFC membranes.

High-Quality Bondwire Integrated Transformer (고품질 본드와이어 집적형 트랜스포머)

  • Song, Byeong-Uk;Lee, Hae-Yeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.2
    • /
    • pp.81-91
    • /
    • 2002
  • In this paper, a high-quality integrated transformer using bondwires is proposed and fabricated. The bondwire transformer inherently has low conductor loss due to wide cross-section and small parasitic capacitance because the vertical placement of the bondwire loop separates from substrate and effectively reduces the substrate effects. It can be fabricated easily by used of the modern automatic wirebonding technology. The electrical characteristics of the fabricated transformers are compared with those of the spiral transformer It is expected that the bondwire transformer can improve the performance for RFIC and MMIC applied to a variety of application, for example, Mixer, Balanced Amplifier, VCO, and LNA.

The Catalytic Effects of o-Iodosobenzoate Ion on Hydrolysis of p-Nitrophenylvalate in ETAMs Solution (ETAMs 용액내에서 p-Nitrophenylvalate의 가수분해반응에 미치는 o-Iodosobenzoate Ion의 촉매효과)

  • Kim, Jeung-Bea
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.119-126
    • /
    • 2011
  • In this study, reaction model and reactions rate accelerated by o-iodosobenzoate ion(IB$^{\ominus}$) on hydrolysis reaction of p-nitrophenyl valate(NPV) using ethyl tri-octyl ammonium mesylate(ETAMs) for quaternary ammonium salts, the phase transfer catalysis(PTC) reagent, were investigated. The effect of IB$^{\ominus}$ on hydrolysis reaction rate constant of NPV was weak without ETAMs solutions. Otherwise, in ETAMs solutions, the hydrolysis reactions exhibit higher first order kinetics with respect to the nucleophile, IB$^{\ominus}$, and ETAMs, suggesting that reactions are occurring in small aggregates of the three species including the substrate(NPV), whereas the reaction of NPV with OH$^{\ominus}$ is not catalyzed by ETAMs. Different concentrations of NPV were tested to measure the change of rate constants to investigate the effect of NPV as substrate and the results showed that the effect was weak. This means the reaction would be the first order kinetics with respect to the nucleophile. This behavior for the drastic rate-enhancement of the hydrolysis is referred as 'Aggregation complex model' for reaction of hydrophobic organic ester with o-iodosobenzoate ion(IB$^{\ominus}$) in hydrophobic quarternary ammonium salt(ETAMs) solutions.

Anode-supported Solid Oxide Fuel Cells Prepared by Spin-coating (Spin-coating 공정에 의해 제조된 음극 지지형 고체산화물 연료전지)

  • Yu, Ji-Haeng;Lee, Hee-Lak;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.733-739
    • /
    • 2007
  • NiO-YSZ anode-supported single cell was prepared by spin-coating YSZ and LSM slurries as electrolyte and cathode, respectively. Dense YSZ electrolyte film was successfully prepared on the porous NiO-YSZ anode substrate by tuning pre-sintering temperature of NiO-YSZ and co-firing temperature. The thickness of YSZ film was controlled by the solid content of slurry and coating cycles. The experimental conditions affecting on the thickness of YSZ film was discussed. Single cells with the active electrode area ${\sim}0.8\;cm^2$ were prepared by spin-coating the cathode layers of LSM-YSZ mixture and LSM consequently as well. The effects of the pre-sintering temperature and thus the microstructure of NiO-YSZ substrate on the current-voltage characteristics of co-fired cell were investigated.

Effects of Substrate Temperature and the $O_2$/Ar Ratio on the Characteristics of RF Magnetron Sputtered $RuO_2$ Thin Films

  • Park, Jae-Yong;Shim, Kyu-Ha;Park, Duck-Kyun
    • The Korean Journal of Ceramics
    • /
    • v.2 no.1
    • /
    • pp.43-47
    • /
    • 1996
  • $RuO_2$ thin films deposited directly on Si substrate by RF magnetron sputtering method using $RuO_2$ target have been investigated. Special interest was focused on the effect of process parameter on the surface roughness of $RuO_2$ films. Crystallization behavior and electrical properties of the films deposited at $300^{\circ}C$ were superior to those deposited at room temperature. Metallic Ru phase was formed in pure Ar and this phase had resulted poor adhesion after post annealing process in oxidizing ambient. Microstructural analysis reveals that the size of the $RuO_2$ crystallites gets smaller and the surface becomes smoother as the $O_2$ partial pressure or film thickness decreases. Irrespective of the $O_2/Ar$ ratio, resistivity of $RuO_2$ films ranged in $50~70 {\mu}{\Omega}-cm$. As the film thickness decreases, there is a thickness where the resistivity rises abruptly. Such an onset thickness turned out to be dependent n the $O_2$/Ar ratio.

  • PDF

Effects of Various Post-Treatments of Carbon Nanotube Films for Reliable Field Emission

  • Han, Jae-Hee;Lee, Su-Hong;Berdinsky, Alexander S.;Yoo, Ji-Beom;Park, Chong-Yun;Choi, Jin-Ju;Jung, Tae-Won;Han, In-Taek;Kim, Jong-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1462-1465
    • /
    • 2005
  • In this report, the FE characteristics of carbon nanotubes (CNTs) treated using both thermal annealing and mechanical coatings on the as-grown CNTs system atically studied. It was found that in the high temperature annealed samples, CNTs were attacked at its root during annealing due to a small amount of oxygen, and were pulled out of the substrate in places after FE measurements because of the contact resistance. However, for the mechanically coated samples both with spin on glass (SOG) and polymethyl methacrylate (PMMA), CNTs were found to be nearly intact after FE measurements and showed reliable FE characteristics over repeatable voltage scan. The reliability of CNTs during FE could be owing to the strong adhesion of CNTs to the substrate both by SOG and PMMA coatings.

  • PDF

Response Surface Methodological Approach for Optimization of Enzymatic Synthesis of Sorbitan Methacrylate

  • Jeong, Gwi-Taek;Lee, Kyoung-Min;Kim, Hae-Sung;Lee, Woo-Tai;Sunwoo, Chang-Shin;Park, Don-Hee
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.511-516
    • /
    • 2005
  • Sorbitan methacrylate was synthesized from sorbitan dehydrated from D-sorbitol using an immobilized lipase. To optimize the enzymatic synthesis of sorbitan methacrylate, response surface methodology was applied to determine the effects of five-level-four-factors and their reciprocal interactions on sorbitan methacrylate biosynthesis. A total of 30 individual experiments were performed, which were designed to study reaction temperature, reaction time, enzyme amount and substrate molar ratio. A statistical model predicted that the highest conversion yield of sorbitan methacrylate was 100%, at the following optimized reaction conditions: a reaction temperature of 43.06 $^{\circ}C$, a reaction time of 164.25 mins., an enzyme amount of 7.47%, and a substrate molar ratio of 3.98:1. Using these optimal factor values under experimental conditions in four independent replicates, the average conversion yield reached 98.7%${\pm}$1.2% and was well within the value predicted by the model.

  • PDF

Improvement of Mchanical Property of Indium-tin-oxide Films on Polymer Substrates by using Organic Buffer Layer

  • Park, Sung-Kyu;Han, Jeong-In;Moon, Dae-Gyu;Kim, Won-Keun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.2
    • /
    • pp.32-37
    • /
    • 2002
  • This paper gives the basic mechanical properties of indium-tin-oxide (ITO) films on polymer substrates which are exposed to externally and thermally induced bending force. By using modified Storney formula including triple layer structure and bulge test measuring the conductive changes of patterned ITO islands as a function of bending curvature, the mechanical stability of ITO films on polymer substrates was intensively investigated. The numerical analyses and experimental results show thermally and externally induced mechanical stresses in the films are responsible for the difference of thermal expansion between the ITO film and the substrate, and leer substrate material and its thickness, respectively. Therefore, a gradually ramped heating process and an organic buffer layer were employed to improve the mechanical stability, and then, the effects of the buffer layer were also quantified in terms of conductivity-strain variations. As a result, it is uncovered that a buffer layer is also a critical factor determining the magnitude of mechanical stress and the layer with the Young's modulus lower than a specific value can contribute to relieving the mechanical stress of the films.