• Title/Summary/Keyword: substrate effects

Search Result 2,024, Processing Time 0.033 seconds

Application of thermodynamics to chemical vapor deposition

  • Latifa Gueroudji;Hwang, Nong-Moon
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.09a
    • /
    • pp.1-20
    • /
    • 1998
  • Processing of thin films by chemical vapor deposition (CVD) is accompanied by chemical reactions, in which the rigorous kinetic analysis is difficult to achieve. In these conditions, thermodynamic calculation leads to better understanding of the CVD process and helps to optimise the experimental parameters to obtain a desired product. A CVD phase diagram has been used as guide lines for the process. By determining the effect of each process variable on the driving force for deposition, the thermodynamic limit for the substrate temperature that diamond can deposit is calculated in the C-H system by assuming that the limit is defined by the CVD diamond phase diagram. The addition of iso-supersaturation ratio lines to the CVD phase diagram in the Si-Cl-H system provides additional information about the effects of CVD process variables.

  • PDF

The Effects of Interlayer on the DLC Coating (중간층이 DLC 코팅에 미치는 영향)

  • Song, Jin-Soo;Nam, Tae-Woon
    • Corrosion Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.65-70
    • /
    • 2011
  • DLC is considered as the candidate material for application of moving parts in automotive components relatively in high pressure and temperature operating conditions for its high hardness with self lubrication and chemical inertness. The properties of interlayer between the substrate and the DLC film were studied. Arc ion plating method have been employed to deposit onto substrate and sputtering method was used for synthesizing DLC onto interlayer. Among these six types of interlayer, deposited DLC film onto TiCN showed excellent value for characteristics. From the results of analysis for physical properties of DLC films, it seems that the adhesion forces were more important factors than intrinsic mechanical properties such as hardness, roughness and wear resistance of DLC films. AFM(Atomic Force Microscope) was used for understanding roughness of DLC films. Hardnesses of the coating layers were identified by nano-indentation method and adhesions were checked by scratch method.

Bipolar Pulse Bias Effects on the Properties of MgO Reactively Deposited by Inductively Coupled Plasma-Assisted Magnetron Sputtering

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.23 no.3
    • /
    • pp.145-150
    • /
    • 2014
  • MgO thin films were deposited by internal ICP-assisted reactive-magnetron sputtering with bipolar pulse bias on a substrate to suppress random arcs. Mg is reactively sputtered by a bipolar pulsed DC power of 100 kHz into ICP generated by a dielectrically shielded internal antenna. At a mass flow ratio of $Ar/O_2$ = 10 : 2 and an ICP/sputter power ratio of 1 : 1, optimal film properties were obtained (a powder-like crystal orientation distribution and a RMS surface roughness of approximately 0.42 nm). A bipolar pulse substrate bias at a proper frequency (~a few kHz) prevented random arc events. The crystalline preferred orientations varied between the (111), (200) and (220) orientations. By optimizing the plasma conditions, films having similar bulk crystallinity characteristics (JCPDS data) were successfully obtained.

The dependence of temperature and the effects of RTP annealing of PECVD SiO$_2$films (PECVD 산화막의 온도 의존성과 RTP 어닐링 효과)

  • 배성식;서용진;김태형;김창일;최현식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.34-38
    • /
    • 1992
  • Low temperature device processing has become of great interest within the last few years. In such low temperature processes, SiO$_2$films formed by Plasma-enhanced chemical vapor deposition (PECVD) have been studied. PECVD SiO$_2$films were formed with substrate temperature, and annealing time and temperature of RTP changed, and its'characteristics were obsreved by C-V measurement. We found that the quality of SiO$_2$films formed by PECVD depended on annealing time rather than substrate temperature.

  • PDF

Effects of Substrate and Sintering Conditions on the Properties of Screen Printed Bi-Pb-Sr-Ca-Cu-O Superconduction Thick Films (Screen printing 방법에 의한 후막형 Bi-Pb-Sr-Ca-Cu-O 초전도체의 소결조건과 기판의 초전도성에 미치는 영향)

  • 김혜동;임호빈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.26-30
    • /
    • 1990
  • Bi$\_$0.7/Pb$\_$0.3/Sr$_1$Ca$_1$Cu$\_$1.8/Ox thick films were screen printed on magnesia(MgO), silver and yttrium stabilized zirconia (YSZ) substrates and were sintered in a boat with cover to prevent the evaporation. The high-Tc phase increase and the low-Tc phase and Ca$_2$PbO$_4$ decrease with an increase in sintering temperature from 835$^{\circ}C$ to 860$^{\circ}C$. YSZ substrate interact strongly with the oxide resulting in poor superconductor, while the Ag and MgO substrates were satisfactory to make screen printed superconductors. The Bi$\_$0.7/Pb$\_$0.3/Sr$_1$Ca$_1$Cu$\_$1.8/Ox thick films screen printed both on Ag and MgO substrates show high Tc phase of ~85% and Tc of 96K.

Chararcteristice of Al Depositon on Nd-based Permanent Magnet Prepared by Ion Plating (이온 플레이팅에 의한 Nd계 희토류 영구자석의 Al 증착 특성)

  • 여현동;백운승;권식철;장도연;공곤승;박동원;김대룡
    • Journal of Surface Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.181-190
    • /
    • 1998
  • Al ion plating was carried to improve corrosion resistance of Nd-based permanent magnet made by prwder molding method. The effects of applied votage, pressyre and temperature were investigated to find the reation between coating parameters and their properties. Density of coating layer increased with voltage and thus corrosion resistance improved. However when voltage was applied more than 1000V, corrosion resistance whet down because of resputtering effect. Good corrosion resistance was acquired when gas pressure was $5.0\times10^-2$>torr, which is satisfied momentum energy of Ar, Al ions as well as quantity of plasma. The layer coated in low temperature range have better surface density and corrosion resistance than in high temperature. This result is seemed due to the characteristics of substrate itself. All coating layers were showed stong adhesion with substrate.

  • PDF

Lour Voltage Operated RFMEMS Switch for Advanced Mobile System Applications (차세대 이동통신시스템에 적용을 위한 저전압구동의 RFMEMS 스위치)

  • Seo, Hye-K.;Park, Jae-Y.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2395-2397
    • /
    • 2005
  • A low voltage operated piezoelectric RF MEMS in-line switch has been realized by using silicon bulk micromachining technologies for advanced mobile/wireless applications. The developed RF MEMS in-line switches were comprised of four piezoelectric cantilever actuators with an Au contact metal electrode and a suspended Au signal transmission line above the silicon substrate. The measured operation dc bias voltages were ranged from 2.5 to 4 volts by varying the thickness and the length of the piezoelectric cantilever actuators, which are well agreed with the simulation results. The measured isolation and insertion loss of the switch with series configuration were -43dB and -0.21dB (including parasitic effects of the silicon substrate) at a frequency of 2GHz and an actuation voltage of 3 volts.

  • PDF

Reliability Test of Pd Nanogap-Based Hydrogen Sensors (Pd 나노갭 수소 센서의 신뢰성 연구)

  • Park, Seyoung;Kim, Wonkyung;Lee, Wooyoung
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.399-406
    • /
    • 2020
  • Pd nanogap hydrogen sensors were developed using an elastomeric substrate and operated through an on-off mechanism. A 10 nm thick Pd thin film was formed on a polydimethylsiloxane (PDMS) substrate, and 50% of the physical strain was applied in the longitudinal direction to fabricated uniform nanogaps. The initial concentration of the hydrogen gas for the PDMS/Pd films was controlled, and subsequently, the on-off switching response was measured. We found that the average nanogap was less than 50 nm, and the Pd nanogap hydrogen sensors operated over a wide range of temperatures. In particular, the sensors work properly even at a very low temperature of -40℃ with a fast response time of 2 s. In addition, we have investigated the relative humidity and annealing effects.

The Effects of Surface Pretreatments on Adhesion Strength of TiN Films by DC Magnetron Sputtering (표면전처리가 반응성 스퍼터링법으로 제조한 TiN 코팅층의 밀착력에 미치는 영향)

  • 김흥윤;백운승;권식철;김규호
    • Journal of Surface Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.225-234
    • /
    • 1993
  • Titanium nitride coatings were deposited onto SUS304 stainless steel substrates pretreated by mechanical scrubbing, chemical etching at 50% HCl solution and Ar ion etching. Adhesion strength were measured by scratch tester and confirmed by SEM with EDS. Adhesion strength of Ar ion etched substrate was 10 to 15 times higher than that of mechanical scrubbed or chemical etched substrate. Ar ion etching brought about an uniform and fine spherical shaped surface, while chemical etching gave rise to a rough and irregular surface on SEM micrograph. It was suggested that higher adhesion strength might be caused by anchoring effect of Ar ion etched surface prior to TiN deposition.

  • PDF

Thin Film Growth of ZnO dependant upon conditions of Temp. & Sub-streate (기판과 열처리 조건에 따른 ZnO 성장 연구)

  • Lee, Kyung-Ju;Lee, Dong-Woo;Roh, Ji-Hyoung;Moon, Byung-Moo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.340-341
    • /
    • 2007
  • Thin film of ZnO was deposited on various substrate by Nd:YAG Pulsed Laser Deposition(PLD) with a wavelength of 355nm. Further more, Thin filme of ZnO conducted by various temperature conditions. The surface morphology of the ZnO thin film was investigated by X-Ray Diffraction(XRD) and Atomic Force Microscopy(AFM). Effects of various substrates and Temperature conditions were analyzed. The best properties were obtained on $600^{\circ}C$ with post-deposition annealing at $600^{\circ}C$ in flowing $O_2$ atmosphere for several hours.

  • PDF