DOI QR코드

DOI QR Code

Pd 나노갭 수소 센서의 신뢰성 연구

Reliability Test of Pd Nanogap-Based Hydrogen Sensors

  • 박세영 (연세대학교 신소재공학과) ;
  • 김원경 (경북대학교 나노소재공학부) ;
  • 이우영 (연세대학교 신소재공학과)
  • Park, Seyoung (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Wonkyung (School of Nano & Materials Science and Engineering, Kyungpook National University) ;
  • Lee, Wooyoung (Department of Materials Science and Engineering, Yonsei University)
  • 투고 : 2020.11.25
  • 심사 : 2020.11.29
  • 발행 : 2020.11.30

초록

Pd nanogap hydrogen sensors were developed using an elastomeric substrate and operated through an on-off mechanism. A 10 nm thick Pd thin film was formed on a polydimethylsiloxane (PDMS) substrate, and 50% of the physical strain was applied in the longitudinal direction to fabricated uniform nanogaps. The initial concentration of the hydrogen gas for the PDMS/Pd films was controlled, and subsequently, the on-off switching response was measured. We found that the average nanogap was less than 50 nm, and the Pd nanogap hydrogen sensors operated over a wide range of temperatures. In particular, the sensors work properly even at a very low temperature of -40℃ with a fast response time of 2 s. In addition, we have investigated the relative humidity and annealing effects.

키워드

참고문헌

  1. M. Kim, The Era of Hydrogen Revolution, The Sallim Publisher, Korea, pp. 12-20, 2005
  2. National Research Council (U.S.), National Academy of Engineering, National Academy of Sciences (U.S.), The Hydrogen Economy : Opportunities, Costs, Barriers, and R&D Needs, The Natinal Academies Press Washington, D.C., pp. 1-2, 2004
  3. K. J. Liekhus, I. A. Zlochower, K. L. Cashdollar, S. M. Djordjevic and C. A. Loehr, "Flammability of gas mixtures containing volatile organic compounds and hydrogen". J. Loss Prev. Process Ind., Vol. 13, pp. 317-384, 2000.
  4. L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hubert, and U. Banach, "Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications", Int. J. Hydrogen Energy, Vol.35, pp 373-384, 2010 https://doi.org/10.1016/j.ijhydene.2009.10.064
  5. A. Hulanicki, S. Glab, and F. Ingman, "Chemical sensors definitions and classification", Pure Appl. Chem, Vol. 63, pp. 1247-1250, 1991. https://doi.org/10.1351/pac199163091247
  6. T. Hubert, L. Boon-Brett, G. Black, and U. Banach, "Hydrogen sensors-A review", Sens. Actuators B, Vol.157, No. 2, pp. 329-352, 2011. https://doi.org/10.1016/j.snb.2011.04.070
  7. C.H. Han, D.W. Hong, I.J. Kim, J. Gwak, S.D. Han, and K.C. Singh, "Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor", Sens. Actuators B, Vol. 128, pp. 320-325, 2007. https://doi.org/10.1016/j.snb.2007.06.025
  8. V. R. Katti, A. K. Debnath, S. C. Gadkari, S. K. Gupta, V. C. Sahni, "Passivated thick film catalytic type H2 sensor operating at low temperature", Sens. Actuators. B, Vol. 84, pp. 219-225, 2002 https://doi.org/10.1016/S0925-4005(02)00028-X
  9. I. Simon and M. Arndt, "Thermal and gas-sensing properties of a micromachined thermal conductivity sensor for the detection of hydrogen in automotive applications", Sens. and Actuators B, Vol. 98, pp. 104-108, 2002.
  10. G. Jessop "Katharometers", J. Sci. Instrum., Vol. 43, pp 777-782, 1966. https://doi.org/10.1088/0950-7671/43/11/301
  11. Y. Chao, S. Yao, W.J. Buttner, and J. R. Stetter, "Amperometric sensor for selective and stable hydrogen measurement", Sens. Actuators B, Vol. 106, pp. 784-790, 2005. https://doi.org/10.1016/j.snb.2004.09.042
  12. G. Korotcenkov, S.D. Han, and J. R. Stetter, "Review of electrochemical hydrogen sensors", Chem. Rev., Vol. 109, pp. 1402-1433, 2009. https://doi.org/10.1021/cr800339k
  13. R.C. Hughes and W.K. Schubert, "Thin films of Pd/Ni alloys for detection of high hydrogen concentrations", J. Appl. Phys., Vol. 71, pp. 542-544, 1992. https://doi.org/10.1063/1.350646
  14. T. Xu, M. P. Zach, Z. L. Xiao, D. Rosenmann, U. Welp, W. K. Kwok, and G. W. Crabtree, "Self-assembled monolayer-enhanced hydrogen sensing with ultrathin palladium films", Appl. Phys. Lett., Vol. 86, pp. 104-203, 2005.
  15. D. R. Baselt, B. Fruberger, E. Klaassen, S. Cemalovic, C. L. Britton Jr., S. V. Patel, T. E. Mlsna, D. MCCorkle, and B. Warmack, "Design and performance of a microcantilever-based hydrogen sensor", Sens. Actuators B, Vol. 88, pp. 120-131, 2003. https://doi.org/10.1016/S0925-4005(02)00315-5
  16. D. Iannuzzi, M Slaman, J. H. Rector, H. Schreuders, S. Deladi, and M. C. Elwenspoek, "A fiber-top cantilever for hydrogen detection", Sens. Actuators B, Vol. 121, pp. 706-708, 2003.
  17. S. Dong, F. Bai, J. F. Li, and D. Viehland, "Sound-resonance hydrogen sensor", Appl. Phys. Lett., Vol. 82, pp. 4590-4592, 2003. https://doi.org/10.1063/1.1586994
  18. W. P. Jakubik, M. W. Urbaczyk, S. Kochowski, and J. Bodzenta, "Bilayer structure for hydrogen detection in a surface acoustic wave sensor system", Sens. Actuators B, Vol. 82, pp. 265-271, 2002. https://doi.org/10.1016/S0925-4005(01)01061-9
  19. M. A. Butler, "Micromirror optical-fibre hydrogen sensor", Sens. Actuators B, Vol. 22, pp. 142-145, 1994. https://doi.org/10.1016/0925-4005(94)87015-2
  20. S. Roy, C. Jacob, and S. Basu, "Studies on Pd/3C-SiC Schottky junction hydrogen sensors at high temperature", Sens. Actuators B, Vol. 94, pp. 298-303, 2003. https://doi.org/10.1016/S0925-4005(03)00380-0
  21. F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, "Hydrogen sensors and switches from electrodeposited palladium mesowire arrays", Science, Vol. 293, pp 2227-2231, 2001. https://doi.org/10.1126/science.1063189
  22. J. Lee, W. Shim, E. Lee, J. J. Noh, and W. Lee, "Highly Mobile Palladium Thin Films on an Elastomeric Substrate : Nanogap-Based Hydrogen Gas Sensers", Angew. Chem., Vol. 10, pp. 5301-5305, 2011.
  23. W. Kim, B. Jang, H. Lee, and W. Lee, "Reliability and selectivity of H2 sensors composed of Pd Film nanogaps on an elastomeric substrate", Sens. Actuators B, Vol. 224, pp. 547-551, 2016. https://doi.org/10.1016/j.snb.2015.10.092
  24. B. Jang, W. Kim, M. Song, and W. Lee, "Thermal stability of the sensing properties in H2 sensors composed of Pd nanogaps on an Elastomeric Substrate", Sens. Actuators B, Vol. 240, pp. 186-192, 2017. https://doi.org/10.1016/j.snb.2016.08.140
  25. B. Xie, M. Zheng, F. Liu, X. Peng, G. Wang, and M. Han, "fast response characteristics of hydrogen sensor based on Pd nanoparticle films with controlled coverage", J. Nanopart. Res.,Vol. 15, pp. 1746, 2003.
  26. E. C. Walter, F. Favier, and R. M. Penner, "Palladium mesowire arrays for fast hydrogen sensors and hydrogen-actuated switches" Anal. Chem., Vol. 74, pp. 1546-1553, 2002. https://doi.org/10.1021/ac0110449
  27. T. Kiefer, F. Favier, O. Vazquez-Mena, G. Villanueva, and J. Brugger, "A single nanotrench in a palladium microwire for hydrogen detection", Nanotechnology, Vol. 19, pp. 125-502, 2002.
  28. F. Favier, J. Brugger, and J. F. Ranjard, French Patent application, 0757673, 19 Sep., 2007.
  29. T. Kiefer, A. Salette, L.G. Villanueva, and J. Brugger, "Large arrays of chemo-mechanical nanoswitches for ultralow-power hydrogen sensing", J. Micromech. Microeng., Vol. 20, pp. 105-119, 2010.
  30. H. Jung, B. Jang, W. Kim, J. Noh, and W. Lee, "Ultra-sensitive, One-time Use Hydrogen Sensors Based on Sub-10 nm Nanogaps on an Elastomeric Substrate", Sens. Actuators B, Vol. 178, pp. 689-693, 2013. https://doi.org/10.1016/j.snb.2012.12.076
  31. S. Kim, B. Jang, J. Park, Y. Lee, H. Lee, S. Cho and W. Lee, "Kinitic control of nanocrack formation in a palladium thin film on an elastomeric subsrtate for hydrogen gas sensing in air", Sens. Actuators B, Vol. 230, pp. 367-373, 2016. https://doi.org/10.1016/j.snb.2016.02.093
  32. L. Brett, J. Bousek, P. Castello, O. Salyk, F. Harskamp, L. Aldea, and F. Tinaut, "Reliability of commercially available hydrogen sensors for detection of hydrogen at critical concentrations: part I - testing facility and methodologies", Int. J. Hydrogen Energy, Vol. 34, pp. 562-571, 2009. https://doi.org/10.1016/j.ijhydene.2008.10.033
  33. L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hubert, and U. Banach, "Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications", Int. J. Hydrogen Energy, Vol. 35, pp. 373-384, 2010. https://doi.org/10.1016/j.ijhydene.2009.10.064