Browse > Article
http://dx.doi.org/10.46670/JSST.2020.29.6.399

Reliability Test of Pd Nanogap-Based Hydrogen Sensors  

Park, Seyoung (Department of Materials Science and Engineering, Yonsei University)
Kim, Wonkyung (School of Nano & Materials Science and Engineering, Kyungpook National University)
Lee, Wooyoung (Department of Materials Science and Engineering, Yonsei University)
Publication Information
Journal of Sensor Science and Technology / v.29, no.6, 2020 , pp. 399-406 More about this Journal
Abstract
Pd nanogap hydrogen sensors were developed using an elastomeric substrate and operated through an on-off mechanism. A 10 nm thick Pd thin film was formed on a polydimethylsiloxane (PDMS) substrate, and 50% of the physical strain was applied in the longitudinal direction to fabricated uniform nanogaps. The initial concentration of the hydrogen gas for the PDMS/Pd films was controlled, and subsequently, the on-off switching response was measured. We found that the average nanogap was less than 50 nm, and the Pd nanogap hydrogen sensors operated over a wide range of temperatures. In particular, the sensors work properly even at a very low temperature of -40℃ with a fast response time of 2 s. In addition, we have investigated the relative humidity and annealing effects.
Keywords
Hydrogen sensor; Reliability; Temperature; Humidity; Thermal stability; Nanogap; Palladium;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Kim, The Era of Hydrogen Revolution, The Sallim Publisher, Korea, pp. 12-20, 2005
2 National Research Council (U.S.), National Academy of Engineering, National Academy of Sciences (U.S.), The Hydrogen Economy : Opportunities, Costs, Barriers, and R&D Needs, The Natinal Academies Press Washington, D.C., pp. 1-2, 2004
3 K. J. Liekhus, I. A. Zlochower, K. L. Cashdollar, S. M. Djordjevic and C. A. Loehr, "Flammability of gas mixtures containing volatile organic compounds and hydrogen". J. Loss Prev. Process Ind., Vol. 13, pp. 317-384, 2000.
4 L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hubert, and U. Banach, "Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications", Int. J. Hydrogen Energy, Vol.35, pp 373-384, 2010   DOI
5 A. Hulanicki, S. Glab, and F. Ingman, "Chemical sensors definitions and classification", Pure Appl. Chem, Vol. 63, pp. 1247-1250, 1991.   DOI
6 T. Hubert, L. Boon-Brett, G. Black, and U. Banach, "Hydrogen sensors-A review", Sens. Actuators B, Vol.157, No. 2, pp. 329-352, 2011.   DOI
7 C.H. Han, D.W. Hong, I.J. Kim, J. Gwak, S.D. Han, and K.C. Singh, "Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor", Sens. Actuators B, Vol. 128, pp. 320-325, 2007.   DOI
8 V. R. Katti, A. K. Debnath, S. C. Gadkari, S. K. Gupta, V. C. Sahni, "Passivated thick film catalytic type H2 sensor operating at low temperature", Sens. Actuators. B, Vol. 84, pp. 219-225, 2002   DOI
9 I. Simon and M. Arndt, "Thermal and gas-sensing properties of a micromachined thermal conductivity sensor for the detection of hydrogen in automotive applications", Sens. and Actuators B, Vol. 98, pp. 104-108, 2002.
10 G. Jessop "Katharometers", J. Sci. Instrum., Vol. 43, pp 777-782, 1966.   DOI
11 T. Kiefer, F. Favier, O. Vazquez-Mena, G. Villanueva, and J. Brugger, "A single nanotrench in a palladium microwire for hydrogen detection", Nanotechnology, Vol. 19, pp. 125-502, 2002.
12 F. Favier, J. Brugger, and J. F. Ranjard, French Patent application, 0757673, 19 Sep., 2007.
13 T. Kiefer, A. Salette, L.G. Villanueva, and J. Brugger, "Large arrays of chemo-mechanical nanoswitches for ultralow-power hydrogen sensing", J. Micromech. Microeng., Vol. 20, pp. 105-119, 2010.
14 H. Jung, B. Jang, W. Kim, J. Noh, and W. Lee, "Ultra-sensitive, One-time Use Hydrogen Sensors Based on Sub-10 nm Nanogaps on an Elastomeric Substrate", Sens. Actuators B, Vol. 178, pp. 689-693, 2013.   DOI
15 S. Kim, B. Jang, J. Park, Y. Lee, H. Lee, S. Cho and W. Lee, "Kinitic control of nanocrack formation in a palladium thin film on an elastomeric subsrtate for hydrogen gas sensing in air", Sens. Actuators B, Vol. 230, pp. 367-373, 2016.   DOI
16 L. Brett, J. Bousek, P. Castello, O. Salyk, F. Harskamp, L. Aldea, and F. Tinaut, "Reliability of commercially available hydrogen sensors for detection of hydrogen at critical concentrations: part I - testing facility and methodologies", Int. J. Hydrogen Energy, Vol. 34, pp. 562-571, 2009.   DOI
17 L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hubert, and U. Banach, "Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications", Int. J. Hydrogen Energy, Vol. 35, pp. 373-384, 2010.   DOI
18 R.C. Hughes and W.K. Schubert, "Thin films of Pd/Ni alloys for detection of high hydrogen concentrations", J. Appl. Phys., Vol. 71, pp. 542-544, 1992.   DOI
19 T. Xu, M. P. Zach, Z. L. Xiao, D. Rosenmann, U. Welp, W. K. Kwok, and G. W. Crabtree, "Self-assembled monolayer-enhanced hydrogen sensing with ultrathin palladium films", Appl. Phys. Lett., Vol. 86, pp. 104-203, 2005.
20 D. R. Baselt, B. Fruberger, E. Klaassen, S. Cemalovic, C. L. Britton Jr., S. V. Patel, T. E. Mlsna, D. MCCorkle, and B. Warmack, "Design and performance of a microcantilever-based hydrogen sensor", Sens. Actuators B, Vol. 88, pp. 120-131, 2003.   DOI
21 D. Iannuzzi, M Slaman, J. H. Rector, H. Schreuders, S. Deladi, and M. C. Elwenspoek, "A fiber-top cantilever for hydrogen detection", Sens. Actuators B, Vol. 121, pp. 706-708, 2003.
22 S. Dong, F. Bai, J. F. Li, and D. Viehland, "Sound-resonance hydrogen sensor", Appl. Phys. Lett., Vol. 82, pp. 4590-4592, 2003.   DOI
23 W. P. Jakubik, M. W. Urbaczyk, S. Kochowski, and J. Bodzenta, "Bilayer structure for hydrogen detection in a surface acoustic wave sensor system", Sens. Actuators B, Vol. 82, pp. 265-271, 2002.   DOI
24 M. A. Butler, "Micromirror optical-fibre hydrogen sensor", Sens. Actuators B, Vol. 22, pp. 142-145, 1994.   DOI
25 S. Roy, C. Jacob, and S. Basu, "Studies on Pd/3C-SiC Schottky junction hydrogen sensors at high temperature", Sens. Actuators B, Vol. 94, pp. 298-303, 2003.   DOI
26 F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, "Hydrogen sensors and switches from electrodeposited palladium mesowire arrays", Science, Vol. 293, pp 2227-2231, 2001.   DOI
27 J. Lee, W. Shim, E. Lee, J. J. Noh, and W. Lee, "Highly Mobile Palladium Thin Films on an Elastomeric Substrate : Nanogap-Based Hydrogen Gas Sensers", Angew. Chem., Vol. 10, pp. 5301-5305, 2011.
28 W. Kim, B. Jang, H. Lee, and W. Lee, "Reliability and selectivity of H2 sensors composed of Pd Film nanogaps on an elastomeric substrate", Sens. Actuators B, Vol. 224, pp. 547-551, 2016.   DOI
29 B. Jang, W. Kim, M. Song, and W. Lee, "Thermal stability of the sensing properties in H2 sensors composed of Pd nanogaps on an Elastomeric Substrate", Sens. Actuators B, Vol. 240, pp. 186-192, 2017.   DOI
30 B. Xie, M. Zheng, F. Liu, X. Peng, G. Wang, and M. Han, "fast response characteristics of hydrogen sensor based on Pd nanoparticle films with controlled coverage", J. Nanopart. Res.,Vol. 15, pp. 1746, 2003.
31 E. C. Walter, F. Favier, and R. M. Penner, "Palladium mesowire arrays for fast hydrogen sensors and hydrogen-actuated switches" Anal. Chem., Vol. 74, pp. 1546-1553, 2002.   DOI
32 Y. Chao, S. Yao, W.J. Buttner, and J. R. Stetter, "Amperometric sensor for selective and stable hydrogen measurement", Sens. Actuators B, Vol. 106, pp. 784-790, 2005.   DOI
33 G. Korotcenkov, S.D. Han, and J. R. Stetter, "Review of electrochemical hydrogen sensors", Chem. Rev., Vol. 109, pp. 1402-1433, 2009.   DOI