• Title/Summary/Keyword: substrate effects

Search Result 2,024, Processing Time 0.066 seconds

Effects of Surface Offcut Angle of GaAs Substrate on Dislocation Density of InGaP Epilayers (GaAs기판의 표면 Offcut각도가 InGaP 에피막의 전위밀도에 미치는 영향)

  • 이종원;박경수;이종식
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.3
    • /
    • pp.49-56
    • /
    • 2002
  • In this study, the InGaP epilayers were grown on the exact and the $2^{\circ}$, $6^{\circ}$, $10^{\circ}$ of cut GaAs substrates by metal-organic vapor phase epitaxy, and the effects of interfacial elastic strains determined by the substrate offcut angle upon the resulting dislocation density of epilayer were investigated for the first time. The elastic strains were obtained from lattice mismatch and lattice misfit by TXRD, and the dislocation densities from epilayer x-ray FWHM. For the offcut angle range used in this study, the elastic strain was maximum and x-ray FWHM minimum at offcut angle $6^{\circ}$. From 11K PL measurements, PL wavelength was found to decrease with an increase of offcut angle. PL intensity was maximum at offcut angle $6^{\circ}$. TEM results showed that the electron diffraction pattern was of typical zincblende structure, and that the dislocation density was minimum for substrate offcut angle $6^{\circ}$. The results obtained in this study, along with the device fabrication process and beam characteristics, clearly demonstrated that the optimum substrate offcut angle for the InGaP/GaAs heterostructures is $6^{\circ}$.

  • PDF

Effect of Substrate Temperature and O2 Introduction With ITO Deposition by Electron Beam Evaporation on Polycyclic Olefin Polymer (전자빔으로 폴리사이클릭 올레핀 기판에 ITO 증착시 기판온도 및 산소 도입의 영향)

  • Ahn, Hee-Jun;Ha, KiRyong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.742-748
    • /
    • 2005
  • Transparent conductive indium-tin oxide (ITO) films are widely used as transparent electrodes for flat panel displays. Many of the ITO films for practical use have been prepared by magnetron sputtering, chemical vapor deposition, electron beam evaporation, etc. An oxide target composed of 10 wt% $SnO_2$ and 90 wt% $In_2O_3$ has been deposited onto polycyclic olefin polymer (POP) substrate by electron beam evaporation. POP has a higher glass transition temperature ($Tg=330^{\circ}C$) than other conventional polymers. In this study, the effects of substrate temperature and the $O_2$ introduction flow rate were investigated in terms of physical, electrical and optical properties of deposited ITO films. We investigated the effects of processing variables such as substrate temperature and the oxygen introduction flow rate. The best electrical and optical properties of deposited ITO films obtained from this study were electrical resistivity value of ${\rho}=1.78{\times}10^{-3}{\Omega}{\cdot}cm$ and optical transmittance of about 85% at 8 sccm (Standard Cubic Centimeter per Minute) $O_2$ introduction flow rate, $5{\AA}/sec$ deposition rate, $1000{\AA}$ deposited ITO thickness and $200^{\circ}C$ substrate temperature.

Effects of Substrate Temperature on the Properties Sputtered Fe Films Epitaxially Grown on Mgo(001) (기판온도가 MgO(001) 기판위에서 에피택시성장한 Fe스파터박막의 특성에 미치는 영향)

  • 김동우;장평우;김원태;유성초
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.4
    • /
    • pp.184-189
    • /
    • 1999
  • 1000 $\AA$ thick Fe films were epitaxially grown on MgO(001) by an rf sputtering and effects of substrate temperature on the structural and magnetic properties were investigated. X-ray diffraction intensity increased with increasing substrate temperature and inter-planar spacing $d_{(002)}$ decrease with increasing the temperature up to 25$0^{\circ}C$. The increased intensity and decreased inter-planar spacing were thought to be attributed to the enhancement of lattice match between Fe films and MgO, thus yielding good epitaxial growth. By using torque magnetometer, VSM and pole figure, very nice epitaxial growth of sputtered Fe films on MgO could be confirmed and $K_1$ value of Fe films grown at 25$0^{\circ}C$ was $4.6{\times}10^5\;erg/cc$, which was very similar to that of bulk single Fe crystal.

  • PDF