• Title/Summary/Keyword: substrate binding domain

Search Result 56, Processing Time 0.026 seconds

Structural Insight into Dihydrodipicolinate Reductase from Corybebacterium glutamicum for Lysine Biosynthesis

  • Sagong, Hye-Young;Kim, Kyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.226-232
    • /
    • 2016
  • Dihydrodipicolinate reductase is an enzyme that converts dihydrodipicolinate to tetrahydrodipicolinate using an NAD(P)H cofactor in L-lysine biosynthesis. To increase the understanding of the molecular mechanisms of lysine biosynthesis, we determined the crystal structure of dihydrodipicolinate reductase from Corynebacterium glutamicum (CgDapB). CgDapB functions as a tetramer, and each protomer is composed of two domains, an Nterminal domain and a C-terminal domain. The N-terminal domain mainly contributes to nucleotide binding, whereas the C-terminal domain is involved in substrate binding. We elucidated the mode of cofactor binding to CgDapB by determining the crystal structure of the enzyme in complex with NADP+ and found that CgDapB utilizes both NADH and NADPH as cofactors. Moreover, we determined the substrate binding mode of the enzyme based on the coordination mode of two sulfate ions in our structure. Compared with Mycobacterium tuberculosis DapB in complex with its cofactor and inhibitor, we propose that the domain movement for active site constitution occurs when both cofactor and substrate bind to the enzyme.

O-Methyltransferases from Arabidopsis thaliana

  • Kim, Bong-Gyu;Kim, Dae-Hwan;Hur, Hor-Gil;Lim, Jun;Lim, Yoong-Ho;Ahn, Joong-Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.113-119
    • /
    • 2005
  • O-methylation mediated by O-methyltransferases (OMTs) is a common modification in natural product biosynthesis and contributes to diversity of secondary metabolites. OMTs use phenylpropanoids, flavonoids, other phenolics and alkaloids as substrates, and share common domains for S-adenosyl-L-methionine (AdoMet) and substrate binding. We searched Arabiposis genome and found 17 OMTs genes (AtOMTs). AdoMet- and substrate-binding sites were predicted. AdoMet binding domain of AtOMTs is highly conserved, while substrate-binding domain is diverse, indicating use of different substrates. In addition, expressions of six AtOMT genes in response to UV and in different tissues were investigated using real-time quantitative reverse transcriptase-polymerase chain reaction. All the AtOMTs investigated were expressed under normal growth condition and most, except AtOMT10, were induced after UV illumination. AtOMT1 and AtOMT8 were expressed in all the tissues, whereas AtOMT10 showed flower-specific expression. Analysis of these AtOMT gene expressions could provide some clues on AtOMT involvement in the cellular processes.

Carboxy-terminus truncations of Bacillus licheniformis SK-1 CHI72 with distinct substrate specificity

  • Kudan, Sanya;Kuttiyawong, Kamontip;Pichyangkura, Rath
    • BMB Reports
    • /
    • v.44 no.6
    • /
    • pp.375-380
    • /
    • 2011
  • Bacillus licheniformis SK-1 naturally produces chitinase 72 (CHI72) with two truncation derivatives at the C-terminus, one with deletion of the chitin binding domain (ChBD), and the other with deletions of both fibronectin type III domain (FnIIID) and ChBD. We constructed deletions mutants of CHI72 with deletion of ChBD (CHI72${\Delta}$ChBD) and deletions of both FnIIID and ChBD (CHI72${\Delta}$FnIIID${\Delta}$ChBD), and studied their activity on soluble, amorphous and crystalline substrates. Interestingly, when equivalent amount of specific activity of each enzyme on soluble substrate was used, the product yield from CHI72-${\Delta}$ChBD and CHI72${\Delta}$FnIIID${\Delta}$ChBD on colloidal chitin was 2.5 and 1.6 fold higher than CHI72, respectively. In contrast, the product yield from CHI72${\Delta}$ChBD and CHI72${\Delta}$FnIIID-${\Delta}$ChBD on ${\beta}$-chitin reduced to 0.7 and 0.5 fold of CHI72, respectively. These results suggest that CHI72 can modulate its substrate specificities through truncations of the functional domains at the C-terminus, producing a mixture of enzymes with elevated efficiency of hydrolysis.

Backbone NMR chemical shift assignment for the substrate binding domain of Escherichia coli HscA

  • Jin Hae Kim
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.28 no.2
    • /
    • pp.6-9
    • /
    • 2024
  • HscA is a Hsp70-type chaperone protein that plays an essential role to mediate the iron-sulfur (Fe-S) cluster biogenesis mechanism in Escherichia coli. Like other Hsp70 chaperones, HscA is composed of two domains: the nucleotide binding domain (NBD), which can hydrolyze ATP and use its chemical energy to facilitate the Fe-S cluster transfer process, and the substrate binding domain (SBD), which directly interacts with the substrate, IscU, the scaffold protein of an Fe-S cluster. In the present work, we prepared the isolated SBD construct of HscA (HscA(SBD)) and conducted the solution-state nuclear magnetic resonance (NMR) experiments to have its backbone chemical shift assignment information. Due to low spectral quality of HscA(SBD), we obtained all the NMR data from the sample containing the peptide LPPVKIHC, the HscA-interaction motif of IscU, from which the chemical shift assignment could be done successfully. We expect that this information provides an important basis to execute detailed structural characterization of HscA and appreciate its interaction with IscU.

Functions of the C-Terminal Region of Chitinase ChiCW from Bacillus cereus 28-9 in Substrate-Binding and Hydrolysis of Chitin

  • Huang, Chien-Jui;Chen, Chao-Ying
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1897-1903
    • /
    • 2006
  • In order to investigate the functions of the C-terminal region of chitinase ChiCW of Bacillus cereus 28-9, a C-terminal truncated enzyme, ChiCW$\Delta$FC, was expressed in Escherichia coli and purified to homogeneity for biochemical characterization. Compared with ChiCW, ChiCW$\Delta$FC exhibited higher chitinase activity at high temperature and pH, but expressed lower hydrolytic and binding activities toward insoluble substrates. In addition, kinetic properties indicated that ChiCW$\Delta$MC hydrolyzed oligomeric and polymeric substrates less efficiently than ChiCW. These results suggest that the C-terminal region of ChiCW plays important roles in substrate binding and hydrolysis of chitin. In addition, the biological meaning of C-terminal proteolytic modification of ChiCW is discussed.

Characterization of nucleotide-induced changes on the quaternary structure of human 70 kDa heat shock protein Hsp70.1 by analytical ultracentrifugation

  • Borges, Julio C.;Ramos, Carlos H.I.
    • BMB Reports
    • /
    • v.42 no.3
    • /
    • pp.166-171
    • /
    • 2009
  • Hsp70s assist in the process of protein folding through nucleotide-controlled cycles of substrate binding and release by alternating from an ATP-bound state in which the affinity for substrate is low to an ADP-bound state in which the affinity for substrate is high. It has been long recognized that the two-domain structure of Hsp70 is critical for these regulated interactions. Therefore, it is important to obtain information about conformational changes in the relative positions of Hsp70 domains caused by nucleotide binding. In this study, analytical ultracentrifugation and dynamic light scattering were used to evaluate the effect of ADP and ATP binding on the conformation of the human stress-induced Hsp70.1 protein. The results of these experiments showed that ATP had a larger effect on the conformation of Hsp70 than ADP. In agreement with previous biochemical experiments, our results suggest that conformational changes caused by nucleotide binding are a consequence of the movement in position of both nucleotide- and substrate-binding domains.

Catalytic and Structural Properties of Pyridoxal Kinase

  • Cho, Jung-Jong;Kim, Se-Kwon;Kim, Young-Tae
    • BMB Reports
    • /
    • v.30 no.2
    • /
    • pp.125-131
    • /
    • 1997
  • This work reports studies of the catalytic and structural properties of pyridoxal kinase (ATP: pyridoxal 5' -phosphotransferase, EC. 2.7.1.35), Pyridoxal kinase catalyzes the phosphorylation of vitamin $B_6$ (pyridoxal, pyridoxamine, pyridoxine) using ATP-Zn as a phosphoryl donor. The enzyme purified from brain tissues is made up of two identical subunits of 40 kDa each. Native enzyme was inhibited by a substrate analogue, pyridoxal-oxime. Limited chymotrypsin digestion of pyridoxal kinase yields two fragments of 24 and 16 kDa with concomitant loss of catalytic activity. These fragments were isolated by DEAE ion exchange chromatography and used for binding studies with fluorescent ATP and pyridoxal analogues. The spectroscopic properties of both fluorescent pyridoxal analogue and Anthraniloyl ATP (Ant-ATP) bound to the 24 kDa fragment are indistinguishable from those of both pyridoxal analogue and Ant-ATP bound to the native pyridoxal kinase, respectively. The small 16 kDa fragment, generated by proteolytic cleavage of the kinase, does not bind any of the substrate analogues. Binding characteristics of Ant-ATP were extensively studied by measuring the changes in fluorescence spectra at various conditions. From the results presented herein, it is postulated that the structural domain associated with catalytic activity comprises approximately one-half of the molecular mass of pyridoxal kinase (24 kDa). whereas the remaining portion (16 kDa) of the enzyme contains a regulatory binding domain.

  • PDF

Effect on the Arginine Transport of Mutant MCAT1, Mouse Cationic Aminoacid Transporter (MCAT1의 돌연변이체가 Arginine 통과 능력에 미치는 영향)

  • Kim, Jung-Woo
    • The Journal of Natural Sciences
    • /
    • v.8 no.2
    • /
    • pp.35-41
    • /
    • 1996
  • To find the substrate interacting site of the MCAT1, charged amino acid residues in the transmembrane domain were changed to opposite charged amino acids and studied the arginine uptake, gp70 binding, efflux and protein expression using the Xenopus oocyte expression method. Among the five mutants of MCAT1, the D403K showed the most interesting characteristics, which had normal gp70 binding but low arginine uptake function, that means the normal expression on the membrane but decreased transport function. All mutants except K211E showed decreased arginine efflux, and kinetic study showed decreased Vmax. Together, Clu(403) residue of MCAT1 may show the possible substrate interacting site in the transmembrane domain of MCAT1.

  • PDF

Stability Analysis of Bacillus stearothermopilus L1 Lipase Fused with a Cellulose-binding Domain

  • Hwang Sangpill;Ahn Ik-Sung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.329-333
    • /
    • 2005
  • This study was designed to investigate the stability of a lipase fused with a cellulose­binding domain (CBD) to cellulase. The fusion protein was derived from a gene cluster of a CBD fragment of a cellulase gene in Trichoderma hazianum and a lipase gene in Bacillus stearother­mophilus L1. Due to the CBD, this lipase can be immobilized to a cellulose material. Factors affecting the lipase stability were divided into the reaction-independent factors (RIF), and the re­action-dependent factors (RDF). RIF includes the reaction conditions such as pH and tempera­ture, whereas substrate limitation and product inhibition are examples of RDF. As pH 10 and $50^{\circ}C$ were found to be optimum reaction conditions for oil hydrolysis by this lipase, the stability of the free and the immobilized lipase was studied under these conditions. Avicel (microcrystal­line cellulose) was used as a support for lipase immobilization. The effects of both RIF and RDF on the enzyme activity were less for the immobilized lipase than for the free lipase. Due to the irreversible binding of CBD to Avicel and the high stability of the immobilized lipase, the enzyme activity after five times of use was over $70\%$ of the initial activity.