References
-
Wegele, H., M
$\ddot{u}$ ller, L. and Buchner, J. (2004) Hsp70 and Hsp90-a relay team for protein folding. Rev. Physiol. Biochem. Pharmacol. 151, 1-44 https://doi.org/10.1007/s10254-003-0021-1 - Borges, J.C. and Ramos, C.H.I. (2005) Protein folding assisted by chaperones. Protein Pept. Lett. 12, 256-261
- Lee, S. and Tsai, F.T.F. (2005) Molecular chaperones in protein quality control. J. Biochem. Mol Biol. 38, 259- 265 https://doi.org/10.5483/BMBRep.2005.38.3.259
- Craig, E.A. (1989) Essential roles of 70kDa heat inducible proteins. Bioessays 11, 48-52 https://doi.org/10.1002/bies.950110203
-
Daugaard, M., Rohde, M. and J
$\ddot{a}$ $\ddot{a}$ ttel$\ddot{a}$ , M. (2007) The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett. 581, 3702-3710 https://doi.org/10.1016/j.febslet.2007.05.039 - Szabo, A., Langer, T., Schroder, H., Flanagan, J., Flanagan, J., Bukau, B. and Hartl, F.-U. (1994) The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system - DnaK, DnaJ and GrpE. Proc. Natl. Acad. Sci. 91, 10345-10349 https://doi.org/10.1073/pnas.91.22.10345
- Russell, R., Karzai, A.W., Mehl, A.F. and McMacken, R. (1999) DnaJ dramatically stimulates ATP hydrolysis by DnaK: insight into targeting of Hsp70 proteins to polypeptide substrates. Biochemistry 38, 4165-4176 https://doi.org/10.1021/bi9824036
- Bukau, B. and Horwich, A.L. (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92, 351-366 https://doi.org/10.1016/S0092-8674(00)80928-9
- Buchberger, A., Theyssen, H., Schroder, H., McCarty, J.S., Virgallita, G., Milkereit, P., Reinstein, J. and Bukau, B. (1995) Nucleotide-induced conformational changes in the ATPase and substrate binding domains of the DnaK chaperone provide evidence for interdomain communication. J. Biol. Chem. 270, 16903-16910 https://doi.org/10.1074/jbc.270.28.16903
- Schuck, P. (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606-1619 https://doi.org/10.1016/S0006-3495(00)76713-0
- Schuck, P., Perugini, M.A., Gonzales, N.R., Howlett, G.J. and Schubert, D. (2002) Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems. Biophys. J. 82, 1096-1111 https://doi.org/10.1016/S0006-3495(02)75469-6
- Laue, T.M. (2001) Biophysical studies by ultracentrifugation. Curr. Opin. Struct. Biol. 11, 579-583 https://doi.org/10.1016/S0959-440X(00)00250-5
- Borges, J.C. and Ramos, C.H.I. (2006) Spectroscopic and thermodynamic measurements of nucleotide-induced changes in the human 70-kDa heat shock cognate protein. Arch. Biochem. Biophys. 452, 46-54 https://doi.org/10.1016/j.abb.2006.05.006
- Cantor, C. R. and Schimmel, P. R. (1980) Size and shape of macromolecules. In Biophysical Chemistry, Part II: Techniques for the Study of Biological Structure and Function (pg. 539-590). L.W. McCombs (ed.). W. H. Freeman and Company, New York
- Tanford, C. (1961) Physical Chemistry of Macromolecules. John Wiley & Sons, New York
- Hokputsa, S., Jumel, K., Alexander, C. and Harding, S.E. (2003) Hydrodynamic characterisation of chemically degraded hyaluronic acid. Carbohydrate Polymers 52, 111- 117 https://doi.org/10.1016/S0144-8617(02)00298-9
- Jiang, J., Prasad, K., Lafer, E.M. and Sousa, R. (2005) Structural basis of interdomain communication in the Hsc70 chaperone. Mol. Cell 20, 513-524 https://doi.org/10.1016/j.molcel.2005.09.028
- Sriram M., Osipiuk J., Freeman B., Morimoto R. and Joachimiak A. (1997) Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain. Structure 5, 403-414 https://doi.org/10.1016/S0969-2126(97)00197-4
- Osipiuk J., Walsh M.A., Freeman B.C., Morimoto R.I. and Joachimiak A. (1999) Structure of a new crystal form of human Hsp70 ATPase domain. Acta. Crystallogr. D. Biol. Crystallogr. 55, 1105-1107
- Morshauser R.C., Hu W., Wang H., Pang Y., Flynn G.C. and Zuiderweg ER. (1999) High-resolution solution structure of the 18 kDa substrate-binding domain of the mammalian chaperone protein Hsc70. J. Mol. Biol. 289, 1387- 1403 https://doi.org/10.1006/jmbi.1999.2776
- Worrall L.J. and Walkinshaw M.D. (2007) Crystal structure of the C-terminal three-helix bundle subdomain of C. elegans Hsp70. Biochem. Biophys. Res. Comun. 357, 105-110 https://doi.org/10.1016/j.bbrc.2007.03.107
- Revington, M., Zhang, Y., Yip, G.N., Kurochkin, A.V. and Zuiderweg, E.R. (2005) NMR investigations of allosteric processes in a two-domain thermus thermophilus Hsp70 molecular chaperone. J. Mol. Biol. 349,163-183 https://doi.org/10.1016/j.jmb.2005.03.033
- Fung, K.L., Hilgenberg, L., Wang, N.M. and Chirico, W.J. (1996) Conformations of the nucleotide and polypeptide binding domains of a cytosolic Hsp70 molecular chaperone are coupled. J. Biol. Chem. 271, 21559-21565 https://doi.org/10.1074/jbc.271.35.21559
- Revington, M., Holder, T.M. and Zuiderweg, E.R. (2004) NMR study of nucleotide-induced changes in the nucleotide binding domain of thermus thermophilus Hsp70 chaperone DnaK: implications for the allosteric mechanism. J. Biol. Chem. 279, 33958-33967 https://doi.org/10.1074/jbc.M313967200
- Borges, J.C., Fischer, H., Craievich, A.F., Hansen, L.D. and Ramos, C.H.I. (2003) Free human mitochondrial GrpE is a symmetric dimer in solution. J. Biol. Chem. 278, 35337-35344 https://doi.org/10.1074/jbc.M305083200
- Oliveira, C.L.P., Borges, J.C., Torriani, I. and Ramos, C.H.I. (2006) Low resolution structure and stability studies of human GrpE#2, a mitochondrial nucleotide exchange factor. Arch. Biochem. Biophys. 449, 77-86 https://doi.org/10.1016/j.abb.2006.02.015
- Ramos, C.H.I., Oliveira, C.L.P., Fan, C-Y, Torriani, I., and Cyr, D.M. (2008) Biophysical studies of chimeric type i and type II Hsp40s reveal that conserved central modules control the quaternary structure of Hsp40 family members. J. Mol. Biol. 383, 155-166 https://doi.org/10.1016/j.jmb.2008.08.019
- Johnson, M.L., Correia, J.J., Yphantis, D.A. and Halvorson, H.R. (1981) Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques. Biophys. J. 36, 575-588 https://doi.org/10.1016/S0006-3495(81)84753-4
- Ralston, G. (1993) Introduction to analytical ultracentrifugation. Beckman Instruments Inc, Fullerton
- Lebowitz, J., Lewis, M.S. and Schuck, P. (2002) Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci. 11, 2067-2079 https://doi.org/10.1110/ps.0207702
- Zhu, X., Zhao, X., Burkholder, W.F., Gragerov, A., Ogata, C.M., Gottesman, M.E. and Hendrickson, W.A. (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272, 1606-1614 https://doi.org/10.1126/science.272.5268.1606
Cited by
- Structural and functional characterization of the chaperone Hsp70 from sugarcane. Insights into conformational changes during cycling from cross-linking/mass spectrometry assays vol.104, 2014, https://doi.org/10.1016/j.jprot.2014.02.004
- Stoichiometry and thermodynamics of the interaction between the C-terminus of human 90kDa heat shock protein Hsp90 and the mitochondrial translocase of outer membrane Tom70 vol.513, pp.2, 2011, https://doi.org/10.1016/j.abb.2011.06.015
- Heat causes oligomeric disassembly and increases the chaperone activity of small heat shock proteins from sugarcane vol.48, pp.2-3, 2010, https://doi.org/10.1016/j.plaphy.2010.01.001
- Human Mitochondrial Hsp70 (Mortalin): Shedding Light on ATPase Activity, Interaction with Adenosine Nucleotides, Solution Structure and Domain Organization vol.10, pp.1, 2015, https://doi.org/10.1371/journal.pone.0117170
- Effects of transport distance, lairage time and stunning efficiency on cortisol, glucose, HSPA1A and how they relate with meat quality in cattle vol.117, 2016, https://doi.org/10.1016/j.meatsci.2016.03.001
- Structural and functional studies of the Leishmania braziliensis mitochondrial Hsp70: Similarities and dissimilarities to human orthologues vol.613, 2017, https://doi.org/10.1016/j.abb.2016.11.004
- Conformational Changes in Human Hsp70 Induced by High Hydrostatic Pressure Produce Oligomers with ATPase Activity but without Chaperone Activity vol.53, pp.18, 2014, https://doi.org/10.1021/bi500004q
- Molecular chaperones and heat shock proteins in atherosclerosis vol.302, pp.3, 2012, https://doi.org/10.1152/ajpheart.00646.2011