Browse > Article

Functions of the C-Terminal Region of Chitinase ChiCW from Bacillus cereus 28-9 in Substrate-Binding and Hydrolysis of Chitin  

Huang, Chien-Jui (Department of Plant Pathology and Microbiology, National Taiwan University)
Chen, Chao-Ying (Department of Plant Pathology and Microbiology, National Taiwan University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.12, 2006 , pp. 1897-1903 More about this Journal
Abstract
In order to investigate the functions of the C-terminal region of chitinase ChiCW of Bacillus cereus 28-9, a C-terminal truncated enzyme, ChiCW$\Delta$FC, was expressed in Escherichia coli and purified to homogeneity for biochemical characterization. Compared with ChiCW, ChiCW$\Delta$FC exhibited higher chitinase activity at high temperature and pH, but expressed lower hydrolytic and binding activities toward insoluble substrates. In addition, kinetic properties indicated that ChiCW$\Delta$MC hydrolyzed oligomeric and polymeric substrates less efficiently than ChiCW. These results suggest that the C-terminal region of ChiCW plays important roles in substrate binding and hydrolysis of chitin. In addition, the biological meaning of C-terminal proteolytic modification of ChiCW is discussed.
Keywords
ChiCW; chitin-binding domain; hydrolysis; substrate binding; kinetics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Graham, L. S. and M. B. Sticklen. 1994. Plant chitinases. Can. J. Bot. 72: 1057-1083   DOI
2 Huang, C. J. and C. Y. Chen. 2005. High-level expression and characterization of two chitinases, ChiCH and ChiCW, of Bacillus cereus 28-9 in Escherichia coli. Biochem. Biophys. Res. Commun. 327: 8-17   DOI   ScienceOn
3 Liu, Y. H. 2004. Selection of rhizobacteria from Lilium formosanum and the application for the control of Botrytis leaf blight. Master Thesis. National Taiwan University
4 Manoil, C. and J. Beckwith. 1986. A genetic approach to analyzing membrane protein topology. Science 233: 1403- 1408   DOI
5 Morimoto, K., S. Karita, T. Kimura, K. Sakka, and K. Ohmiya. 1997. Cloning, sequencing, and expression of the gene encoding Clostridium paraputrificum chitinase ChiB and analysis of the functions of novel cadherin-like domains and a chitin-binding domain. J. Bacteriol. 179: 7306-7314   DOI
6 Trudel, J. and A. Asselin. 1989. Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal. Biochem. 178: 362-366   DOI   ScienceOn
7 Watanabe, T., W. Oyanagi, K. Suzuki, and H. Tanaka. 1990. Chitinase system of Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation. J. Bacteriol. 172: 4017-4022   DOI
8 Takaya, N., D. Yamazaki, H. Horiuchi, A. Ohta, and M. Takagi. 1998. Intracellular chitinase gene from Rhizopus oligosporus: Molecular cloning and characterization. Microbiology 144: 2647-2654   DOI   ScienceOn
9 Watanabe, T., Y. Ito, T. Yamada, M. Hashimoto, S. Sekine, and H. Tanaka. 1994 The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation. J. Bacteriol. 176: 4465-4472   DOI
10 Felse, P. A. and T. Panda. 1999. Regulation and cloning of microbial chitinase genes. Appl. Microbiol. Biotechnol. 51: 141-151   DOI
11 Huang, C. J. and C. Y. Chen. 2004. Gene cloning and biochemical characterization of chitinase CH from Bacillus cereus 28-9. Ann. Microbiol. 54: 289-297
12 Imoto, T. and K. Yogishita. 1971. A simple activity measurement of lysozyme. Agric. Biol. Chem. 35: 1154- 1156   DOI
13 Mabuchi, N., I. Hashizume and Y. Araki. 2000. Characterization of chitinases excreted by Bacillus cereus CH. Can. J. Microbiol. 46: 370-375   DOI
14 Flach, J., P. E. Pilet, and P. Jolles. 1992. What's new in chitinase research? Experientia 48: 701-716   DOI   ScienceOn
15 Sietsma, J. H. and J. G. H. Wessels. 1979. Evidence for covalent linkages between chitin and ${\beta}$-glucan in a fungal cell wall. J. Gen. Microbiol. 114: 99-108   DOI
16 Huang, C. J., T. K. Wang, S. C. Chung, and C. Y. Chen. 2005. Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. J. Biochem. Mol. Biol. 38: 82-88   DOI
17 Tantimavanich, S., S. Pantuwatana, A. Bhumiratana, and W. Panbangred. 1998. Multiple chitinase enzymes from a single gene of Bacillus licheniformis TP-1. J. Ferment. Bioeng. 85: 259-265   DOI   ScienceOn
18 Wang, F. P., Q. Li, Y. Zhou, M. G. Li, and X. Xiao. 2003. The C-terminal module of Chi1 from Aeromonas caviae CB101 has a function in substrate binding and hydrolysis. Proteins 53: 908-916   DOI   ScienceOn
19 Schagger, H. and G. von Jagow. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379   DOI   ScienceOn
20 Cohen-Kupiec, R. and I. Chet. 1998. The molecular biology of chitin digestion. Curr. Opin. Biotechnol. 9: 270-277   DOI   ScienceOn
21 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254   DOI   ScienceOn
22 Thamthiankul, S., S. Suan-Ngay, S. Tantimavanich, and W. Panbangred. 2001. Chitinase from Bacillus thuringiensis subsp. pakistani. Appl. Microbiol. Biotechnol. 56: 395-401   DOI