The selection of subset size is of great importance to the accuracy of digital image correlation (DIC). In the traditional DIC, a constant subset size is used for computing the entire image, which overlooks the differences among local speckle patterns of the image. Besides, it is very laborious to find the optimal global subset size of a speckle image. In this paper, a self-adaptive and bidirectional dynamic subset selection (SBDSS) algorithm is proposed to make the subset sizes vary according to their local speckle patterns, which ensures that every subset size is suitable and optimal. The sum of subset intensity variation (${\eta}$) is defined as the assessment criterion to quantify the subset information. Both the threshold and initial guess of subset size in the SBDSS algorithm are self-adaptive to different images. To analyze the performance of the proposed algorithm, both numerical and laboratory experiments were performed. In the numerical experiments, images with different speckle distribution, different deformation and noise were calculated by both the traditional DIC and the proposed algorithm. The results demonstrate that the proposed algorithm achieves higher accuracy than the traditional DIC. Laboratory experiments performed on a substrate also demonstrate that the proposed algorithm is effective in selecting appropriate subset size for each point.
Since P. Erdos introduced the concept of "subset-sum-distinctness", lots of mathematicians have been interested in a "dense" set having distinct subset sums. In this paper, we establish a couple of theorems on maximal subset-sun-distinct sequence with respect to the set inclusion.
The optical method Digital Speckle Correlation Measurement (DSCM) has been extensively applied due its capability to measure the entire displacement field over a body surface. A formula of displacement measurement errors by the gradient-based DSCM method was derived. The errors were found to explicitly relate to the image grayscale errors consisting of sub-pixel interpolation algorithm errors, image noise, and subset deformation mismatch at each point of the subset. A power-law dependence of the standard deviation of displacement measurement errors on the subset size was established when the subset deformation was rigid body translation and random image noise was dominant and it was confirmed by both the numerical and experimental results. In a gradient-based algorithm the basic assumption is rigid body translation of the interrogated subsets, however, this is in contradiction to the real circumstances where strains exist. Numerical and experimental results also indicated that, subset shape function mismatch was dominant when the order of the assumed subset shape function was lower than that of the actual subset deformation field and the power-law dependence clearly broke down. The power-law relationship further leads to a simple criterion for choosing a suitable subset size, image quality, sub-pixel algorithm, and subset shape function for DSCM.
In 1967, as an answer to the question of P. Erdos on a set of integers having distinct subset sums, J. Conway and R. Guy constructed an interesting sequence of sets of integers. They conjectured that these sets have distinct subset sums and that they are close to the best possible with respect to the largest element. About 30 years later (in 1996), T. Bohman could prove that sets from the Conway-Guy sequence actually have distinct subset sums. In this paper, we generalize the concept of subset-sum-distinctness to k-SSD, the k-fold version. The classical subset-sum-distinct sets would be 1-SSD in our definition. We prove that similarly derived sequences as the Conway-Guy sequence are k-SSD.
Communications for Statistical Applications and Methods
/
v.9
no.2
/
pp.521-531
/
2002
Various diagnostic techniques for identifying influential observations are mostly based on the deletion of a single observation. While such techniques can satisfactorily identify influential observations in many cases, they will not always be successful because of some mask effect. It is necessary, therefore, to develop techniques that examine the potentially influential effects of a subset of observations. The partial regression plots can be used to examine an influential observation for a single parameter in multiple linear regression. However, it is often desirable to detect influential observations for a subset of regression parameters when interest centers on a selected subset of independent variables. Thus, we propose a diagnostic measure which deals with detecting influential observations on a subset of regression parameters. In this paper, we propose a measure M, which can be effectively used for the detection of influential observations on a subset of regression parameters in multiple linear regression. An illustrated example is given to show how we can use the new measure M to identify influential observations on a subset of regression parameters.
We introduced the concept of the 𝜖0-density and the 𝜖0-dense ace in [1]. This concept is related to the structure of employment. In addition to the double capacity theorem which was introduced in [1], we need the minimal dense subset. In this paper, we investigate a concept of the minimal 𝜖0-dense subset in the Euclidean m dimensional space.
In this paper, we present an upper bound of the reciprocal sums of generalized subset-sum-distinct sequences with respect to the first terms of the sequences. And we show the suggested upper bound is best possible. This is a kind of generalization of [1] which contains similar result for classical subset-sum-distinct sequences.
We investigate the relationships between the space X and the hyperspaces concerning admissibility and connectedness im kleinen. The following results are obtained: Let X be a Hausdorff continuum, and let A, $B{\in}C(X)$ with $A{\subset}B$. (1) If X is c.i.k. at A, then X is c.i.k. at B if and only if B is admissible. (2) If A is admissible and C(X) is c.i.k. at A, then for each open set U containing A there is a continuum K and a neighborhood V of A such that $V{\subset}IntK{\subset}K{\subset}U$. (3) If for each open subset U of X containing A, there is a continuum B in C(X) such that $A{\subset}B{\subset}U$ and X is c.i.k. at B, then X is c.i.k. at A. (4) If X is not c.i.k. at a point x of X, then there is an open set U containing x and there is a sequence $\{S_i\}^{\infty}_{i=1}$ of components of $\bar{U}$ such that $S_i{\longrightarrow}S$ where S is a nondegenerate continuum containing the point x and $S_i{\cap}S={\emptyset}$ for each i = 1, 2, ${\cdots}$.
The white noise analysis, initiated by Hida [3] in 1975, has been developed to an infinite dimensional distribution theory on Gaussian space $(E^*, \mu)$ as an infinite dimensional analogue of Schwartz distribution theory on Euclidean space with Legesgue measure. The mathematical framework of white noise analysis is the Gel'fand triple $(E) \subset (L^2) \subset (E)^*$ over $(E^*, \mu)$ where $\mu$ is the standard Gaussian measure associated with a Gel'fand triple $E \subset H \subset E^*$.
We introduced the concepts of the generalized accumulation points and the generalized density of a subset of the Euclidean space in [1] and [2]. Using those concepts, we introduce the concepts of the generalized closure, the generalized interior, the generalized exterior and the generalized boundary of a subset and investigate some properties of these sets. The generalized boundary of a subset is closely related to the classical boundary. Finally, we also introduce and study a concept of the thickness of a subset.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.