• Title/Summary/Keyword: suboxic/anoxic conditions

Search Result 5, Processing Time 0.024 seconds

Characteristics of Fe Reduction Process of Shallow Groundwater in a Reclaimed Area, Kim-je (김제시 간척지역 천부 지하수내 철 환원작용 특성에 대한 고찰)

  • Kim, Ji-Hoon;Cheong, Tae-Jin;Ryu, Jong-Sik;Kim, Rak-Hyeon
    • Economic and Environmental Geology
    • /
    • v.46 no.1
    • /
    • pp.39-50
    • /
    • 2013
  • The study area is located on the western coastal region of Korea, partly had been reclaimed lands. Groundwaters of the coastal area show lower Eh and DO values (Eh: 0.57 V ${\rightarrow}$ 0.13 V, DO; 9.7 mg/l ${\rightarrow}$ 1.3 mg/l), and higher Fe concentrations (> 20 mg/l) than those of the inner land (< 0.3 mg/l), indicating that the redox condition of groundwater changes from oxic into suboxic/anoxic conditions as it flows from the inland toward the coastal area. In addition, Fe speciation of groundwater from the coastal area demonstrates that the most dissolved Fe exist as $Fe^{2+}$, reflecting that groundwater is under the anoxic condition to sufficiently occur Fe reduction. According to the result of Fe extraction with the sediment samples from three wells (A, B, C), the sediments provide enough $Fe^{3+}$ to occur the Fe reduction in the groundwater. Integrated all results of the groundwater and sediment, we infer that the Fe reduction to occur in groundwater is associated with the reclamation processes of the study area.

Sedimentary Environments and Heavy Metallic Pollution at Shihwa Lake (시화호의 퇴적환경과 중금속오염)

  • Hyun, Sang-Min;Chun, Jong-Hwa;Yi, Hi-Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.3
    • /
    • pp.198-207
    • /
    • 1999
  • Five core sediments acquired from the Lake Shihwa are analyzed for variations of sedimentary environment and heavy metal pollution after the Shihwa seawall construction. The depositional environment of the study area is divided into anoxic, oxic and mixed suboxic conditions based on the C/N ratio and C/S ratios of organic matters. Controlling factors for redox condition are the water depth and the difference in industrial effluents supply. Correlations among geochemical elements (Mn, U, Mo) show a distinctive difference and thus can be used as an indicator of redox condition. The content of Al, Ti are dependent on the sediment characteristics, and the contents of heavy metals (Cr, Ni, Cu, Zn, and Pb) indicate heavy metal pollution. The concentrations of heavy metals are higher near Shiswa-Banwol industrial complexies than the central part of Lake Shihwa. Especially, the accumulation of the heavy metal at the surface sediments near Shihwa-Banwol industrial complex are two to eight times higher than in the center of Lake Shihwa.

  • PDF

Banded Iron Formations in Congo: A Review

  • Yarse Brodivier Mavoungou;Anthony Temidayo Bolarinwa;Noel Watha-Ndoudy;Georges Muhindo Kasay
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.745-764
    • /
    • 2023
  • In the Republic of Congo, Banded iron formations (BIFs) occur in two areas: the Chaillu Massif and the Ivindo Basement Complex, which are segments of the Archean Congo craton outcropping in the northwestern and southwestern parts of the country. They show interesting potential with significant mineral resources reaching 2 Bt and grades up to 60% Fe. BIFs consist mostly of oxide-rich facies (hematite/magnetite), but carbonate-rich facies are also highlighted. They are found across the country within the similar geological sequences composed of amphibolites, gneisses and greenschists. The Post-Archean Australian Shale (PAAS)-normalized patterns of BIFs show enrichment in elements such as SiO2, Fe2O3, CaO, P2O5, Cr, Cu, Zn, Nb, Hf, U and depletion in TiO2, Al2O3, MgO, Na2O, K2O, Sc, Th, Ba, Zr, Rb, Ni, V. REE diagrams show slight light REEs (rare earth elements; LREEs) compared to heavy REEs (HREEs), and positive La and Eu anomalies. The lithological associations, as well as the very high (Eu/Eu*)SN ratios> 1.8 shown by the BIFs, suggest that they are related to Algoma-type BIFs. The positive correlations between Zr and TiO2, Al2O3, Hf suggest that the contamination comes mainly from felsic rocks, while the absence of correlations between MgO and Cr, Ni argues for negligeable contributions from mafic sources. Pr/Pr* vs. Ce/Ce* diagram indicates that the Congolese BIFs were formed in basins with redox heterogeneity, which varies from suboxic to anoxic and from oxic to anoxic conditions. They were formed through hydrothermal vents in the seawater, with relatively low proportions of detrital inputs derived from igneous sources through continental weathering. Some Congolese BIFs show high contents in Cr, Ni and Cu, which suggest that iron (Fe) and silicon (Si) have been leached through hydrothermal processes associated with submarine volcanism. We discussed their tectonic setting and depositional environment and proposed that they were deposited in extensional back-arc basins, which also recorded hydrothermal vent fluids.

Self-purification Mechanisms in Natural Environments of Korea: I. A Preliminary Study on the Behavior of Organic/Inorganic Elements in Tidal Flats and Rice Fields (자연 정화작용 연구: I. 갯벌과 농지 상층수중 유 ${\cdot}$ 무기 원소의 거동에 관한 예비 연구)

  • Choi, Kang-Won;Cho, Yeong-Gil;Choi, Man-Sik;Lee, Bok-Ja;Hyun, Jung-Ho;Kang, Jeong-Won;Jung, Hoi-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.195-207
    • /
    • 2000
  • Organic and inorganic characteristics including bacterial cell number, enzyme activity, nutrients, and heavy metals have been monitored in twelve acrylic experimental tanks for two weeks to estimate and compare self-purification capacities in two Korean wet-land environments, tidal flat and rice field, which are possibly different with the environments in other countries because of their own climatic conditions. FW tanks, filled with rice field soils and fresh water, consist of FW1&2 (with paddy), FW3&4 (without paddy), and FW5&6 (newly reclaimed, without paddy). SW tanks, filled with tidal flat sediments and salt water, are SW1&2 (with anoxic silty mud), SW3&4 (anoxic mud), and SW5&6 (suboxic mud). Contaminated solution, which is formulated with the salts of Cu, Cd, As, Cr, Pb, Hg, and glucose+glutamic acid, was spiked into the supernatent waters in the tanks. Nitrate concentrations in supernatent waters as well as bacterial cell numbers and enzyme activities of soils in the FW tanks (except FW5&6) are clearly higher than those in the SW tanks. Phosphate concentrations in the SW1 tank increase highly with time compared to those in the other SW tanks. Removal rates of Cu, Cd, and As in supematent waters of the FW5&6 tanks are most slow in the FW tanks, while the rates in SW1&2 are most fast in the SW tanks. The rate for Pb in the SW1&2 tanks is most fast in the SW tanks, and the rate for Hg in the FW5&6 tanks is most slow in the FW tanks. Cr concentrations decrease generally with time in the FW tanks. In the SW tanks, however, the Cr concentrations decrease rapidly at first, then increase, and then remain nearly constant. These results imply that labile organic materials are depleted in the FW5&6 tanks compared to the FW1&2 and FW3&4 tanks. Removal of Cu, Cd, As from the supernatent waters as well as slow removal rates of the elements (including Hg) are likely due to the combining of the elements with organic ligands on the suspended particles and subsequent removal to the bottom sediments. Fast removal rates of the metal ions (Cu, Cd, As) and rapid increase of phosphate concentrations in the SW1&2 tanks are possibly due to the relatively porous anoxic sediments in the SW1&2 tanks compared to those in the SW3&4 tanks, efficient supply of phosphate and hydrogen sulfide ions in pore wates to the upper water body, complexing of the metal ions with the sulfide ions, and subsequent removal to the bottom sediments. Organic materials on the particles and sulfide ions from the pore waters are the major factors constraining the behaviors of organic/inorganic elements in the supernatent waters of the experimental tanks. This study needs more consideration on more diverse organic and inorganic elements and experimental conditions such as tidal action, temperature variation, activities of benthic animals, etc.

  • PDF

The Characteristics of Organic Matter in the Quaternary Sediments from ODP Leg 127 Site 794A, East Sea (동해 ODP Leg 127 Site 794A에서 채취한 제4기 퇴적물의 유기지화학적 특성 연구)

  • Lee Sang Il;Lee Young-Joo;Kim Ji Hoon;Oh Jae Ho;Yun HyeSu
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.707-716
    • /
    • 2005
  • Organic geochemical analyses including Rock-Eval pyrolysis, elemental analysis and stable carbon isotope analysis were performed to evaluate the characteristics of organic matter in the ODP Leg 127 Site 794A sediments and to understand paleoceanographic changes. Based on the TOC contents, C/N ratio, HI vs. OI, $\delta^{13}C_{org}$ and C/S ratio, results imply that dark layers containing a large amount of terrigenous organic matter were deposited under the suboxic/anoxic conditions, whereas the light layers containing largely marine organic matter were deposited under the oxic conditions. These results indicate that increasing surface-productivity by the input of a large amount of terrigenous organic matter from adjacent continent led to the deposition of dark layers during the interglacial highstands, whereas marine primary production and dilution caused by Kosa from the China desert area led to the deposition of light layers with the decreased to terrigenous organic matter during the glacial lowstands.