• Title/Summary/Keyword: submersible facility

Search Result 7, Processing Time 0.02 seconds

A Preliminary Study of a Submersible Facility for Abalone Spats (부침식 전복치패 중간육성장치 개발을 위한 초기연구)

  • YOON Gil Su
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.4
    • /
    • pp.435-442
    • /
    • 1995
  • The abalone shell (Haliotis) is one of the most important resources for the coastal fisheries and it is popular as an aquacultural species. Proper cultivating grounds for mid-term nursery of abalone spats are required before releasing them. It is difficult for us to find good enough aquacultural grounds to rear abalone spats to 20"30mm of shell length. Therefore, we need to study a practical and effective new type of aquacultural device for the nursing of abalone spats by using open sea areas. We can find this kind of studies from 'Marine aya No. 1' of Japan, Though they focused on the easy operation, safe working and low operating cost, it involves so much initial cost that it is difficult for us to justify such expenditure. However, with a modified small buoy system, this submersible facility needs only a horizontal frame to fulfill its essential function and the vortical part can be removed. The working boat equipped with a pump can operate this facility to keep it submerged or floated. This paper deals with the possibility of this submersible fishery facility for the mid term nursing of abalone spats in the open sea. A small version of this system to ensure low initial cost is suggested and wave and current forces were calculated for the estimation of the weight of the mooring anchor.

  • PDF

Semi-Rig, Anti-condensation design on steel surface in pontoon area (Semi-Rig, Pontoon 구역 표면 결로 예방 설계)

  • Seo, Dong-jae;Park, Sang-un;Noh, Joung-hwan;Shim, Hak-mu
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.105-108
    • /
    • 2017
  • Condensation is one of the common issues which we can easily see in everyday life. For example, the surface of glasses with cold water is easily moisturized. This wet surface gives us uncomfortable feeling and is sometimes dangerous because it is slippery. As the safety on working space is one of the most important issue on offshore project, condensation is also important matter to take care of with precaution. Since the bottom of vessel or offshore facility is submersed in the water, the risk of having condensate on the steel surface is getting higher because sea water temperature is normally lower than ambient temperature. And if there is any electric equipment or person working in that space, condensation is normally not allowed. The pontoon of semi-submersible drilling rig is such a space which is submersed, with electric and mechanical equipments and person working periodically. To prevent condensation in pontoon, study was conducted by checking several cases.

  • PDF

Calculation of the Coefficient of Artificial Reef According to the Coefficient of Volume (체적계수에 따른 인공어초 계수산정)

  • Kim, Young Jong;Choi, Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2307-2312
    • /
    • 2014
  • Artificial reef refers to various structures that facility to construction field format and spawning of marine organisms, sea ranch, forest of the sea, and sea jungle artificially in water, Build a production stable base of marine products, thereby contributing to an increase in the income of fishermen. In the management of an artificial reef, the calculation of the number of square reefs may be that it is a method to perform the submersible is an important part of maintenance is correct. However, cost and diving personnel, depending on the diving situation, there is a difficult thing to implement to coast across the country. Therefore, In this study, We calculated the volume using the multi-beam Echo Sounder and side scan sonar for the reefs of the rectangle are the existing installation. And proposes the improvement of the estimation in accordance with the volume coefficient reef.

CONSTRUCTION MANAGEMENT OF TUNNELLING IN SEVERE GROUNDWATER CONDITION

  • Young Nam Lee;Dae Young Kim
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.655-661
    • /
    • 2005
  • For a hydro power plant project, the headrace tunnel having a finished diameter of 3.3m was constructed in volcanic rocks with well-developed vertical joint and high groundwater table. The intake facility was located 20.3 km upstream of the powerhouse and headrace tunnel of 20 km in length and penstock of 440 m in height connected the intake and the powerhouse. The typical caldera lake, Lake Toba set the geology at the site; the caving of the ground caused tension cracks in the vertical direction to be developed and initial stresses at the ground to be released. High groundwater table(the maximum head of 20 bar) in the area of well-connected vertical joints delayed the progress of tunnel excavation severely due to the excessive inflow of groundwater. The excavation of tunnel was made using open-shield type TBM and mucking cars on the rail. High volume of water inflow raised the water level inside tunnel to 70 cm, 17% of tunnel diameter (3.9 m) and hindered the mucking of spoil under water. To improve the productivity, several adjustments such as modification of TBM and mucking cars and increase in the number of submersible pumps were made for the excavation of severe water inflow zone. Since the ground condition encountered during excavation turned out to be much worse, it was decided to adopt PC segment lining instead of RC lining. Besides, depending on the conditions of the water inflow, rock mass condition and internal water pressure, one of the invert PC segment lining with in-situ RC lining, RC lining and steel lining was applied to meet the site specific condition. With the adoption of PC segment lining, modification of TBM and other improvement, the excavation of the tunnel under severe groundwater condition was successfully completed.

  • PDF

A Study on Gathering Behaviour of Fish in the Artificial Sea-floor Area (인공해저에 대한 어류의 위집기구에 관한 연구)

  • 홍성완
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.2
    • /
    • pp.96-104
    • /
    • 2000
  • By using the offshore type submersible platform, Artificial sea floor anchored at a depth of forty meters several experimental studies have been conducted successfully during 1996. The facility consists of an artificial sea floor that floats at 7 meters below the surface, a machinery hut that projects above the surface at the center of the structure and a balance weight beneath the structure. The facility can be surfaced easily by using a water discharging pump in the water tank which is located at the center of it. To find out the behavioral character and the gathering factor of fishes around the artificial sea floor, investigations were carried out during the daytime and nighttime by direct observation and by echo-sounder. Around the testing reefs and artificial sea floor, six kinds of fishes were found by diving observation and the dominants were Scomber japonicus, Sebastes thompsoni and Oplegnathus fascitus. As Scomber japonicus was distributed around the artificial sea floor in dense small school, they were not seen elsewhere in the survey area. The artificial sea floor was concluded to act as a schooling ground far Scomber japonicus, Sebastes thompsoni and Oplegnathus fascitus. were close to the testing reefs(within 10m) in the daytime, and were thought to settle on the testing reefs at nighttime, To examine the distribution of 7shes around the artificial sea floor, an acoustic survey over a 1$\times$1km area, 0-50m in depth during the all day. Around the artificial sea floor many thin scattering fish echo(TS-54.5~ -51.5dB) and dense fish echo(TS-41~-38dB) were mainly distributed. Many scattering fish echoes, which were thought to be a mixture of small squid, pelegic crustacea and ethers, were distributed over the whole survey area. A dense fish school stayed beneath the artificial sea floor for a short duration. These phenomena were concluded to show an attraction and detention function of the artificial sea floor.

  • PDF

Tunneling in Severe Groundwater Inflow Condition (지하수 과다유입 조건하에서의 터널굴착)

  • Lee, Young-Nam;Kim, Dae-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.2
    • /
    • pp.67-76
    • /
    • 2006
  • For a hydro power plant project, the headrace tunnel having a finished diameter of 3.3 m was constructed in volcanic rocks with well-developed vertical joint and high groundwater table. The intake facility was located 20.3km upstream of the powerhouse and headrace tunnel of 20km in length and penstock of 440m in height connected the intake and the powerhouse. The typical caldera lake, Lake Toba set the geology at the site the caving of the ground caused tension cracks in the vertical direction to be developed and initial stresses at the ground to be released. High groundwater table(the maximum head of 20bar) in the area of well-connected vertical joints delayed the progress of tunnel excavation severely due to the excessive inflow of groundwater. The excavation of tunnel was made using open-shield type TBM and mucking cars on the rail. High volume of water inflowraised the water level inside tunnel to 70cm, 17% of tunnel diameter (3.9m) and hindered the mucking of spoil under water. To improve the productivity, several adjustments such as modification of TBM and mucking cars and increase in the number of submersible pumps were made forthe excavation of severe water inflow zone. Since the ground condition encountered during excavation turned out to be much worse, it was decided to adopt PC segment lining instead of RC lining. Besides, depending on the conditions of the water inflow, rock mass condition and internal water pressure, one of the invert PC segment lining with in-situ RC lining, RC lining and steel lining was applied to meet the site specific condition. With the adoption of PC segment lining, modification of TBM and other improvement, the excavation of the tunnel under severe groundwater condition was successfully completed.

  • PDF