• Title/Summary/Keyword: submerged plate

Search Result 119, Processing Time 0.03 seconds

Effects of reverse waves on the hydrodynamic pressure acting on a dual porous horizontal plate

  • Kweon, Hyuck-Min;Choi, Young-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.60-73
    • /
    • 2014
  • The seaward reverse wave, occurring on the submerged dual porous horizontal plate, can contribute to the reduction of the transmitted wave as it reflects the propagating wave. However, the collision between the propagating and seaward reverse waves increases the water level and acts as a weight on the horizontal plate. This study investigated the characteristics of the wave pressure created by the seaward reverse wave through the analysis of experimental data. The analysis confirmed the following results: 1) the time series of the wave pressure showed reverse phase phenomena due to the collision, and the wave pressures acted simultaneously on both upper and lower surfaces of the horizontal plate; 2) the horizontal plate became repeatedly compressed and tensile before and after the occurrence of the seaward reverse wave; and 3) the seaward reverse wave created the total wave pressure to the maximum towards the direction of gravity, primarily on the upper plate. It was also confirmed that the wave distributions showed a similar trend to the wave steepness. Such outcome of the analysis will provide basic information to the structural analysis of the horizontal plate as a wave dissipater of the steel-type breakwater (STB).

Study on the Reduction of Wave Exciting Forces Acting on a Pontoon Type Floating Structure by Submerged Plate (몰수평판에 의한 폰툰형 부유체에 작용하는 파랑강제력의 감소현상에 관한 연구)

  • Lee, Sang-Min;Lee, Won-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.3
    • /
    • pp.213-217
    • /
    • 2007
  • Pontoon type very large floating structure has been considered and actively studied as one of the most important ocean space utilization. The hydroelastic displacement of the pontoon type floating structure in waves is the largest at its weather side. The purpose of this study is to investigate the characteristics and effects of the submerged horizontal plate which is developed to reduce the wave exciting forces acting on the pontoon type floating structure using numerical analysis. The numerical method based on the finite difference method has been adopted and compared with the experimental data to confirm the reliability of it. We have performed the numerical computation of wave exciting forces acting on the pontoon type floating structure with/without submerged plate and discuss the results of simulation.

  • PDF

Submerged Porous Plate Wave Absorber

  • PARK W.T.;LEE S.H.;KEE S.T.
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.4 s.65
    • /
    • pp.9-14
    • /
    • 2005
  • In the present paper, the wave absorbing performance of the fully submerged horizontal porous plates has been investigated, numerically and experimentally. The submerged porous system is composed of multi-layered horizontal porous plates that are clamped at the vertical setwall, which are slightly inclined and placed vertically, in parallel, with spacing. The hydrodynamic interaction of incident waves with the rigid porous multi-layered plates was formulated within the context of linear wave-body interaction theory and Darcy's law. In order to validate the effectiveness of the present computing code, the numerical results were compared with the analytical and experimental results. It is found that triple horizontal porous plates with slight inclination, if properly tuned for wave energy dissipation against the standing waves in front of the vertical wall, can have high performances in reducing the reflected wave amplitudes against the incident waves over a wide range of wave frequency.

Wave Energy Extraction using Partially Submerged Pendulum Plate with Quay Wall (안벽 앞에 부분 잠긴 진자판에 의한 파랑에너지 추출)

  • Cho, Il-Hyoung;Lee, Hyebin;Bae, Yoon Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.208-218
    • /
    • 2017
  • The performance of a wave energy converter (WEC) that uses the rolling motion of a partially submerged pendulum plate in front of a quay wall was analyzed. The wave exciting moment and hydrodynamic moment were obtained using a matched eigenfunction expansion method (MEEM) based on the linear potential theory, and then the roll motion response of a pendulum plate, time averaged extracted power, and efficiency were investigated. The optimal PTO damping coefficient was suggested to give the optimal extracted power. The peak value of the optimal extracted power occurs at the resonant frequency. The resonant peak and its width increase as the submergence depth of the pendulum plate decreases and thickness of the pendulum plate increases. An increase in the wave incidence angle reduces the efficiency of the wave energy converter. In addition, the WEC using a rolling pendulum plate contributes not only to the extraction of the wave energy, but also to a reduction in the waves reflected from the quay wall, which helps to stabilize ships going near the quay wall.

Higher Harmonic Generation by Nonlinear Interaction between Monochromatic Waves and a Horizontal Plate (규칙파와 수평판의 비선형 상호작용에 의한 고차 조화항 발생)

  • Koh, Hyeok-Jun;Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.484-491
    • /
    • 2007
  • Numerical experiments using a numerical wave tank have been performed to verier the nonlinear interaction between monochromatic waves and a submerged horizontal plate. As a model for numerical wave tank, we used a higher-order Boundary Element Method(BEM) based on fully nonlinear potential flow theory and CADMAS-SURF for solving Navier Stokes equations and exact free surface conditions. Both nonlinear models are able to predict the higher harmonic generation in the shallow water region over a submerged horizontal plate. CADMAS-SURF, which involves the viscous effect, can evaluate the higher harmonic generation by flow separation and vortices at the each ends of plate. The comparison of reflection and transmission coefficients with experimental results(Patarapanich and Cheong, 1989) at different lengths and submergence depths of a horizontal plate are presented with a good agreement. It is found that the transfer of energy from the incident fundamental waves to higher harmonics becomes larger as the submergence depth ratio decreases and the length ratio increases.

Experimental Modal Analysis of Perforated Rectangular Plates Submerged in Water (물에 잠긴 다공 직사각평판의 실험적 모드 해석)

  • Yoo, Gye-Hyoung;Lee, Myung-Gyu;Jeong, Kyeong-Hoon;Lee, Seong-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.416-421
    • /
    • 2002
  • This paper dealt with an experimental study on the hydro-elastic vibration of clamped perforated rectangular plates submerged in water. The penetration of holes in the plates had a triangular pattern with P/D (pitch to diameter) 1.750, 2.125, 2.500, 3.000 and 3.750. The natural frequencies of the perforated plates in air were obtained by the analytical method based n the relation between the reference kinetic and maximum potential energy and compared with the experimental results. Good agreement between the results was found for the natural frequencies of the perforated plates in air. It was empirically found that the natural frequencies of the perforated plate in air increase with an increase of P/D, on the other hand, the natural frequencies of the perforated plate in contact with water decrease with an increase of P/D. Additionally, the effect of the submerged depth on the natural frequency was investigated.

  • PDF

Experimental Modal Analysis of Perforated Rectangular Plates Submerged In Water (물에 잠긴 다공 직사각평판의 실험적 모드 해석)

  • 유계형;이명규;정경훈;이성철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.1
    • /
    • pp.70-78
    • /
    • 2003
  • This paper dealt with an experimental study on the hydroelastic vibration of clamped perforated rectangular plates submerged in water. The penetration of holes in the plates had a triangular pattern with P/D (pitch to diameter) 1.750, 2.125, 2.500, 3.000 and 3.750. The natural frequencies of the perforated plates in air were obtained by the analytical method based on the relation between the reference kinetic and maximum potential energy and compared with the experimental results. Good agreement between the results was found for the natural frequencies of the perforated plates in air. It was empirically found that the natural frequencies of the perforated plate in air increase with an increase of P/D, on the other hand, the natural frequencies of the perforated plate in contact with water decrease with an increase of P/D. Additionally. the effect of the submerged depth on the natural frequency was investigated.

HIGH SPEED VARIABLE SQUARE WAVE AC SUBMERGED ARC WELDING -FREQUENCY/BALANCE STUDY .250″ PLAIN CARBON STEEL

  • Reynolds, Jon-O;Sean P. Moran
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.361-365
    • /
    • 2002
  • Advancements in silicon phase control (SCR) technologies provide an arc welding power supply that has the capability to allow the alteration of the Alternating Current (AC) welding output. These technologies provide a square wave output involving sixteen frequency selections and multiple balance selections. While an AC out put is known to minimize magnetic disturbances associate with Direct Current (DC), the potentials of a non-sinusoidal waveform have not been explored. The focus of the paper is to determine the effects that the frequency and balance of an AC wave form output will have upon a high speed Submerge Arc (SAW) application. The test matrix of the project includes welding .250" steel plate. Joint type is square groove with a travel speed of 65 IPM. Each of the weld parameters was held constant, only the frequency and/or balance were altered between welds. Each frequency/balance combination involved three-gap spacing. Upon completion of the welds the bead profiles were measured and recorded. A relationships/trends were observed with various frequency and balance values. Optimum frequency and balance values were found for the .250" square groove application which permit consistent weld sizing, ease of slag removal, and minimal plate distortion.

  • PDF

EQUIVALENT MATERIAL PROPERTIES OF PERFORATED PLATE WITH TRIANGULAR OR SQUARE PENETRATION PATTERN FOR DYNAMIC ANALYSIS

  • Jhung, Myung-Jo;Jo, Jong-Chull
    • Nuclear Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.689-696
    • /
    • 2006
  • For a perforated plate, it is challenging to develop a finite element model due to the necessity of the fine meshing of the plate, especially if it is submerged in fluid. This necessitates the use of a solid plate with equivalent material properties. Unfortunately, the effective elastic constants suggested by the ASME code are deemed not valid for a modal analysis. Therefore, in this study the equivalent material properties of a perforated plate are suggested by performing several finite element analyses with respect to the ligament efficiencies.

Numerical Analysis of Hydrodynamic Performance of a Movable Submerged Breakwater (가동식 잠수 방파제의 유체동력학적 성능 수치해석)

  • Koo, Weon-Cheol;Kim, Do-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.23-32
    • /
    • 2011
  • Numerical analysis of hydrodynamic performance of a movable submerged breakwater was carried out as an eco-friendly marine structure for coastal and harbor protection. Using boundary elements method with two-dimensional frequency-domain reflection and transmission coefficients and wave forces acting on the submerged flat plate were calculated with various submerged depths and respective motion allowable modes. The movable breakwater was found to be more efficient in wave-blocking than the fixed structure. Variation of reflection coefficients was significantly influenced by vertical motion of the body.