• Title/Summary/Keyword: subgrain analysis

Search Result 4, Processing Time 0.019 seconds

Mineral Separation and Sample Preparation Methods Efficient for Subgrain Zircon Analyses (저어콘 아입자분석을 위한 효율적인 광물분리 및 시료준비 방법)

  • 조등룡
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.126-132
    • /
    • 2004
  • This study provides detailed sample preparation methods for subgrain zircon analyses, and a simple mineral separation technique which overflows light mineral grains out of beaker using the running water from faucet. Excluding separation steps using of the Wilfley table and heavy liquid, this technique is faster and more efficient than conventional one, and remarkably suitable for collecting small amount of zircon for subgrain analyses.

Observation and Analysis of Dislocation Spacing in the Subgrain boundary on IN 617 (IN 617의 아결정립계의 전위간격 분석법에 관한 고찰)

  • An, Seong-Uk;Lee, Jong-Min
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.184-190
    • /
    • 1995
  • IN 617 was crept under stresses of 107 and 180 MPa with monotonic deformation to strains of $\varepsilon$= 0.03 - 0.30 at 1073K. In order to determine the distances between the subgrain boundaries, the deformed specimens were examined at magnifications of one hundred thousand times by TEM. In cases . where TEM observations were not possible, subgrain angles($\theta$_{s}=sin^{-1}$(b/s))were measured by Kikuchi diffraction lines. The $\theta$_{k}$ converted from s values measured directly by TEM agreed very well with those measured from Kikuchi lines. Therefore, it was found that the $\theta$_{k}$ values could be used in obtaining s, especially in cases where it is impossible to measure s by TEM.

  • PDF

High-Temperature Oxidation Kinetics and Scales Formed on P122 Steel Welds in Air (P122강 용접부의 대기중 고온산화 부식속도와 스케일 분석)

  • Bak, Sang-Hwan;Lee, Dong-Bok
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.699-707
    • /
    • 2011
  • P122 steel, with a composition of Fe-10.57%Cr-1.79%W-0.96Cu-0.59Mn was arc-welded and oxidized between $600^{\circ}C$ and $800^{\circ}C$ in air for up to 6 months. The oxidation rates increased in the order of the base metal, weld metal, and heat-affected zone (HAZ), depending on the microstructure. The scale morphologies of the base metal, weld metal, and HAZ were similar because it was determined mainly by the alloy chemistry. The scale consisted primarily of a thin $Fe_2O_3$ layer at $600^{\circ}C$ and $700^{\circ}C$ and an outer $Fe_2O_3$ layer and an inner ($Fe_2O_3$, $FeCr_2O_4$)-mixed layer at $800^{\circ}C$. The microstructural changes resulting from heating between $600^{\circ}C$ and $800^{\circ}C$ coarsened the carbide precipitates, secondary Laves phases, and subgrain boundaries in the matrix, resulting in softening of the base metal, weld metal, and HAZ.

Numerical analysis of CZ growth process for sapphire crystal of 300 mm length: Part II. Predictions of crystal growth length without sub-grain defects (300 mm 길이의 사파이어 단결정 대한 CZ 성장공정의 수치해석: Part II. Subgrain 결함이 없는 단결정 성장 길이의 예측)

  • Shin, Ho Yong;Hong, Su Min;Yoon, Jong Won;Jeong, Dae Yong;Im, Jong In
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.272-278
    • /
    • 2013
  • In this study, a c-axis displacement and an internal stress of the sapphire crystal of 300 mm length have been analyzed numerically and the crystal length having no sub-grain defects have been predicted. The hot zone structures were modified with the crucible geometry change and the additional insulation layer installed above the crucible. The simulation results show that the c-axis displacement difference between the original hot zone and others originated from the sub-grain defect formations in the sapphire ingot. When the crystal grown by CZ (Czochralski) grower using the modified hot zone, the crystal length having no sub-grain defects was increased about 57 mm maximum than the original one. When the simulation results compared with the experimental one, the predicted crystal length having no sub-grain defects were well corresponded with the experiment one in c-axis wafer of the 300 mm sapphire ingot. Therefore the sapphire crystal of 250 mm length having no sub-grain defects was successfully grown by CZ process.