• 제목/요약/키워드: subgradient approach

검색결과 6건 처리시간 0.017초

AN APPLICATION OF LAGRANGIAN RELAXATION ALD SUBGRADIENT METHOD FOR A DYNAMIC UNCAPAITATED FACILITY COCATION PROBLEM

  • Song, Jae-Wook;Kim, Sheung-Kown
    • 한국경영과학회지
    • /
    • 제13권2호
    • /
    • pp.47-58
    • /
    • 1988
  • The dynamic uncapacitated facility location model is formulated by a mixed integer programming. It has the objective of minimizing total discounted costs for meeting demands specified in different time periods at various demand centers. Costs include those for operation of facilities to demand centers and a fixed cost associated with the capital investment. The problem is decomposed into two simple Lagrangian relaxed subproblems which are coordinated by Lagrangian multipliers. We explored the effect of using the subgradient optimization procedure and a viable solution approach is proposed. Computational results are presented and further research directions are discussed.

  • PDF

Radio Resource Management Scheme for Heterogeneous Wireless Networks Based on Access Proportion Optimization

  • Shi, Zheng;Zhu, Qi
    • Journal of Communications and Networks
    • /
    • 제15권5호
    • /
    • pp.527-537
    • /
    • 2013
  • Improving resource utilization has been a hot issue in heterogeneous wireless networks (HWNs). This paper proposes a radio resource management (RRM) method based on access proportion optimization. By considering two or more wireless networks in overlapping regions, users in these regions must select one of the networks to access when they engage in calls. Hence, the proportion of service arrival rate that accesses each network in the overlapping region can be treated as an optimized factor for the performance analysis of HWNs. Moreover, this study considers user mobility as an important factor that affects the performance of HWNs, and it is reflected by the handoff rate. The objective of this study is to maximize the total throughput of HWNs by choosing the most appropriate factors. The total throughput of HWNs can be derived on the basis of a Markov model, which is determined by the handoff rate analysis and distribution of service arrival rate in each network. The objective problem can actually be expressed as an optimization problem. Considering the convexity of the objective function, the optimization problem can be solved using the subgradient approach. Finally, an RRM optimization scheme for HWNs is proposed. The simulation results show that the proposed scheme can effectively enhance the throughput of HWNs, i.e., improve the radio resource utilization.

Capacity Assignment and Routing for Interactive Multimedia Service Networks

  • Lim, Byung-Ha;Park, June-Sung
    • Journal of Communications and Networks
    • /
    • 제12권3호
    • /
    • pp.246-252
    • /
    • 2010
  • A binary linear integer program is formulated for the problem of expanding the capacity of a fiber optic network and routing the traffic to deliver new interactive multimedia services. A two-phase Lagrangian dual search procedure and a Lagrangian heuristic are developed. Computational results show superior performance of the two-phase subgradient optimization compared with the conventional one-phase approach.

A Lagrangian Relaxation Approach to Capacity Planning for a Manufacturing System with Flexible and Dedicated Machines

  • Lim, Seung-Kil;Kim, Yeong-Dae
    • 한국경영과학회지
    • /
    • 제23권2호
    • /
    • pp.47-65
    • /
    • 1998
  • We consider a multiperiod capacity planning problem for determining a mix of flexible and dedicated capacities under budget restriction. These capacities are controlled by purchasing flexible machines and/or new dedicated machines and disposing old dedicated machines. Acquisition and replacement schedules are determined and operations are assigned to the flexible or dedicated machines for the objective of minimizing the sum of discounted costs of acquisition and operation of flexible machines, new dedicated machines, and old dedicated machines. In this research, the Problem is formulated as a mixed integer linear Program and solved by a Lagrangian relaxation approach. A subgradient optimization method is employed to obtain lower bounds and a multiplier adjustment method is devised to improve the bounds. We develop a linear programming based Lagrangian heuristic algorithm to find a good feasible solution of the original problem. Results of tests on randomly generated test problems show that the algorithm gives relatively good solutions in a reasonable amount of computation time.

  • PDF

Resource Allocation and EE-SE Tradeoff for H-CRAN with NOMA-Based D2D Communications

  • Wang, Jingpu;Song, Xin;Dong, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권4호
    • /
    • pp.1837-1860
    • /
    • 2020
  • We propose a general framework for studying resource allocation problem and the tradeoff between spectral efficiency (SE) and energy efficiency (EE) for downlink traffic in power domain-non-orthogonal multiple access (PD-NOMA) and device to device (D2D) based heterogeneous cloud radio access networks (H-CRANs) under imperfect channel state information (CSI). The aim is jointly optimize radio remote head (RRH) selection, spectrum allocation and power control, which is formulated as a multi-objective optimization (MOO) problem that can be solved with weighted Tchebycheff method. We propose a low-complexity algorithm to solve user association, spectrum allocation and power coordination separately. We first compute the CSI for RRHs. Then we study allocating the cell users (CUs) and D2D groups to different subchannels by constructing a bipartite graph and Hungrarian algorithm. To solve the power control and EE-SE tradeoff problems, we decompose the target function into two subproblems. Then, we utilize successive convex program approach to lower the computational complexity. Moreover, we use Lagrangian method and KKT conditions to find the global optimum with low complexity, and get a fast convergence by subgradient method. Numerical simulation results demonstrate that by using PD-NOMA technique and H-CRAN with D2D communications, the system gets good EE-SE tradeoff performance.

다중 사용자 OFDM 시스템의 최적 부채널 및 비트 할당: Dual-Decomposition 방법 (The Optimal Subchannel and Bit Allocation for Multiuser OFDM System: A Dual-Decomposition Approach)

  • 박태형;임성빈;서만중
    • 한국통신학회논문지
    • /
    • 제34권1C호
    • /
    • pp.90-97
    • /
    • 2009
  • OFDM (Orthogonal Frequency Division Multiplexing) 전송방식의 장점은 높은 주파수 효율, RF간섭에 대한 강인성, 낮은 다중 경로 왜곡 등을 들 수 있다. 다중 사용자 OFDM의 채널용량을 확대하기 위해서는 사용자간의 부채널과 비트 할당의 효율적인 알고리즘을 개발하여야 한다. 본 연구에서는 다중 사용자의 전송요구량을 만족하는 최적 부채널 및 비트 할당 문제를 0-1 정수계획법 모형으로 형성하고, 원래 문제의 선형계획법 완화 (linear programming relaxation)문제를 dual-decomposition과 subgradient 알고리즘을 사용하여 해를 구하는 효과적인 알고리즘을 제시한다. 또한 dual-decomposition으로 구한 목적함수값은 원래 문제의 선형계획법 완화문제의 최적목적함수 간과 동일함을 증명하였다 모의실험을 통하여 다수의 문제에 대하여 원래 문제의 최적 목적항수값에 대한 dual-decomposition으로 구한 하한의 성능을 제시하였다. MQAM (M-ary Quadrature Amplitude Modulation)을 사용하고 3개의 독립적인 Rayleigh 다중 경로로 구성된 주파수 선택적 채널을 가정한 경우 MATLAB을 사용한 모의실험에서 0-1 정수계획 법으로 구한 최적해의 성능을 실험하였다.