• 제목/요약/키워드: subgrade

검색결과 455건 처리시간 0.032초

노상토의 변형특성에 대한 함수비 및 건조단위중량의 영향 (Effects of Water Content and Dry Unit Weight on Deformational Characteristics of Subgrade Soils)

  • 권기철;오명주
    • 한국도로학회논문집
    • /
    • 제8권2호
    • /
    • pp.87-93
    • /
    • 2006
  • 국내 노상토의 변형특성에 대한 건조단위중량과 함수비의 영향을 평가하고자 4종의 노상토에 대해 다양한 함수비 및 건조단위중량 조건에서 공진주/비틂전단시험을 수행하였다. 건조단위중량은 탄성계수는 물론 정규화탄성계수 감소곡선 모두에 영향을 주는 것으로 나타났다. 정규화 탄성계수는 다짐도가 5% 증가함에 따라 약 20% 감소하였다. 국내 노상토의 탄성계수는 함수비가 $\pm$2% 변화 범위에서 40% 이상 변화하였으며. 지수모델을 적용하여 평가 할 수 있는 것으로 판단된다. 그러나 정규화탄성 계수 감소곡선은 함수비의 영향을 받지 않았다. 또한, 탄성 계수에 대한 하중주파수 및 구속응력의 영향 특성은 시편의 건조단위중량과 함수비 변화에 거의 영향을 받지 않는 것으로 나타나 서로 독립적인 요소로 고려할 수 있음을 알았다.

  • PDF

HWAW방법을 이용한 고속철도 하부 노반 평가 (Evaluation of the status of subgrade of high speed railway using HWAW method)

  • 박형춘;박준오;진남희;노희관;배현정
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.208-212
    • /
    • 2010
  • The high-speed railway consists of tracks, gravel ballast and subgrade, and the dynamic load is passed to subgrade through track and gravel ballast. The relaxation condition of the gravel ballast is able to be evaluate relatively and to be repaired through a continuous management, but it is difficult to evaluate the condition of subgrade, which is final part of supporting dynamic load and to repair it when made a problem. The gravel ballast and subgrade are evaluated by determining shear wave velocity. To evaluate ballast and subgrade, a good method to determine shear wave velocity is a non-destructive experiment such as surface wave tests providing a prompt experiment because an experiment in railway has a lot of tests which are carried out following railway directions and needs to prevent damage of the system. In general, a railway has limitation of an experimental space by narrow width, sleeper and etc., and background noise by a reflector exists. The existing surface wave tests need a minimum space, and it is difficult to get a reliable test results on account of background noise effect. Therefore, it is difficult or impossible to apply to existing surface wave test of subgrade and ballast. In this study, the HWAW method is applied to determine a shear wave velocity profile of the underground. The HWAW method is the experiment which is able to be carried out on a narrow space, and it determines share wave velocity of a site by measuring the wave from surface sources on the same spot. In addition, it removes effects of background noise accordingly to a signal processing using harmonic wavelet transforms, so it is useful to evaluate subgrade of a high-speed railway in the narrow space and the situation of background noise. In order to check an application of the HWAW method, an experiment is carried out on a high-speed railway field and a test result is compared to boring results.

  • PDF

인천국제공항2단계 제3활주로 부지에서 파쇄암을 이용한 노상 시험다짐 시공 (A Test Compacted Construction for Subgrade in the 3rd Runway of the 2th Incheon International Airport Construction Area using Crushed Stone)

  • 김종국;손형호;김영웅;김용철;김동철;김연정
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.507-514
    • /
    • 2005
  • In this construction case study, Crushed stone under 100mm diameter was carried out a test compacted construction for subgrade in the 3rd. runway of the 2th Incheon International Airport Construction area. Conforming to specification needs a minimum rolling compacted number 10 for upper subgrade 100% compaction degree indicated in Federal Aviation Administration and $K_{30}{\geq}20kgf/cm^3$ in plate bearing test. $K_{30}$ to be acquired 100% compaction degree of upper subgrade is confirmed to about $31kgf/cm^3$ from correlation $K_{30}$ vs relative compaction degree.

  • PDF

포화도 변화에 따른 슬래브궤도 혼합성토 노반의 침하 특성 (Settlement characteristics of rock/soil mixture subgrade of slab track with variation of degree of saturation)

  • 박성용;김대상
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1506-1512
    • /
    • 2010
  • 산악지형이 많은 지역에서의 고속철도 건설에는 노선의 선형상의 이유로 터널구간이 많이 존재하며, 터널 건설로 발생하는 암버럭을 유용하기 위하여 노반 건설은 주로 암과 흙의 혼합성토로 이루어지고 있다. 본 연구에서는 이암을 주암으로 하는 혼합토로 이루어진 고속철도 노반의 열차반복하중에 의한 침하특성을 분석하기 위하여 모형토조 실험을 수행하였다. 특히 강우 또는 지하수위 상승에 의한 노반의 포화도 증가가 열차 반복하중 작용 시 노반의 침하특성에 미치는 영향을 분석하기 위하여 초기 포화도 조건을 변화시키면서 실험을 수행하였다. 실험결과, 낮은 포화도 조건에서는 열차반복횟수가 증가할수록 침하가 어느 일정 값에 수렴하는 결과를 나타냈으나, 일정 수준 이상의 포화도 조건에서는 침하가 급격히 증가하는 것을 알 수 있었다. 따라서 노반의 포화도를 일정수준 이하로 관리하는 것이 침하 예방에 중요한 요소임을 확인 할 수 있었다.

  • PDF

Applications of Air-Foamed Stabilized Soil as Potential Subgrade Material of Railway Track

  • Park, Dae-Wook;Vo, Hai Viet;Lim, Yujin
    • International Journal of Railway
    • /
    • 제7권4호
    • /
    • pp.91-93
    • /
    • 2014
  • In these days, use of proper soils for construction materials become more limited, but wasted soils are abundant; therefore, the method which can use wasted soil such as soft clay has been investigated. Air-foamed stabilized soil has been used widely, but never been used as a subgrade material. The aim of this study is to verify the use of air-foamed stabilized soil as the subgrade construction material. Several wasted soils such as soft clay was selected to make air-foamed stabilized soil mixtures. The air-foamed stabilized mixture design was conducted to find the optimum quantity of stabilizing agent (cement) and air-foamed, and the effect of cement quantity and air-foamed quantity on strength of air-foamed stabilized soil mixtures base on the test results of unconfined compression test was investigated. As the quantity of cement is increased, the strength is increased, but the quantity of air-foamed is increased and the strength is decreased. Elastic moduli based on unconfined compression strength were obtained to use as subgrade of railway track design.

Improvement in engineering properties of subgrade soil due to stabilization and its effect on pavement response

  • Nagrale, Prashant P.;Patil, Atulya P.
    • Geomechanics and Engineering
    • /
    • 제12권2호
    • /
    • pp.257-267
    • /
    • 2017
  • This paper presents laboratory investigation of stabilization of subgrade soil. One type of soil and three types of stabilizers i.e., hydrated lime, class F fly ash and polypropylene fibres are selected in the study. Atterberg limit, compaction, california bearing ratio (CBR), unconfined compressive strength and triaxial shear strength tests are conducted on unstabilized and stabilized soil for varying percentage of stabilizers to analyze the effect of stabilizers on the properties of soil. Vertical compressive strains at the top of unstabilized and stabilized subgrade soil were found out by elasto-plastic finite element analysis using commercial software ANSYS. Strategy for design of optimum pavement section was based on extension in service life (TBR) and reduction in layer thickness (LTR). Extension in service life of stabilized subgrade soil is 6.49, 4.37 and 3.26 times more due to lime, fly ash and fibre stabilization respectively. For a given service life of the pavement, there is considerable reduction in layer thicknesses due to stabilization. It helps in reduction in construction cost of pavement and saving in natural resources as well.

지반반력계수$(K_{30})$와 변형률계수$(E_v)$에 대한 고찰 (Study on the subgrade reaction modulus$(K_{30})$ and strain modulus$(E_v)$)

  • 김대상;최찬용;김성중;유진영;양신추
    • 한국철도학회논문집
    • /
    • 제10권3호
    • /
    • pp.264-270
    • /
    • 2007
  • Two modulus, strain modulus $(E_v)$ and subgrade reaction modulus $(K_{30})$ are being used as a standard for bearing stiffness in Korea Railroad design. The first is used in Europe and the other is used in Japan. The methodologies to obtain the two modulus are similar in using plate. But testing methods are different in loading to plate. Therefore, according to soil strain range, there should be large gap in not only computations of deformation modulus but also the necessary time to test. At first, this paper focuses on the two kinds of test methods to evaluate bearing stiffness. Secondly, based on elastic theory, the theory to obtain the two coefficients are studied thoroughly. Finally, the correlations between the two coefficients were analyzed and evaluated based on the field test results more than 38 places. The matching values for subgrade and ground between $K_{30}$ and $E_{v2}$ are proposed with the consideration of the proposed strain reduction factor (1.5 for subgrade and 3 for ground) and safety factor, respectively.

The characteristics of subgrade mud pumping under various water level conditions

  • Ding, Yu;Jia, Yu;Wang, Xuan;Zhang, Jiasheng;Luo, Hao;Zhang, Yu;Chen, Xiaobin
    • Geomechanics and Engineering
    • /
    • 제30권2호
    • /
    • pp.201-210
    • /
    • 2022
  • This paper presents a study regarding the influence of various water levels on the characteristics of subgrade mud pumping through a self-developed test instrument. The characteristics of mud pumping are primarily reflected by axial strain, excess pore water pressure, and fine particle migration. The results show that the axial strain increases nonlinearly with an increase in cycles number; however, the increasing rate gradually decreases, thus, an empirical model for calculating the axial strain of the samples is presented. The excess pore water pressure increases rapidly first and then decreases slowly with an increase in cycles number. Furthermore, the dynamic stress within the soil first rapidly decreases and then eventually slows. The results indicate that the axial strain, excess pore water pressure, and the height and weight of the migrated fine particles decrease significantly with a low water level. In this study, when the water level is 50 mm lower than the subgrade soil surface, the issue of subgrade mud pumping no longer exist.

Effect of bound water on mechanical properties of typical subgrade soils in southern China

  • Ding, Le;Zhang, Junhui;Deng, Zonghuang
    • Geomechanics and Engineering
    • /
    • 제27권6호
    • /
    • pp.573-582
    • /
    • 2021
  • From the effect of bound water, this study aims to seek the potential reasons for difference of mechanical experiment results of subgrades soils. To attain the comparatively test condition of bound water, dry forming (DF) and wet forming (WF) were used in the specimen forming process before testing, series of laboratory tests, i.e., CBR tests, direct shear tests and compaction tests. The measured optimal moisture contents, maximum dry densities, CBR, cohesion c, and internal friction angle 𝜑 were given contrastive analysis. Then to detect the adsorptive bound water in the subgrade soils, the thermal gravimetric and differential scanning calorimetry (TG-DSC) test were employed under different heating rates. The free water, loosely bound water and tightly bound water in soils were qualitatively and quantitatively analyzed. It was found that due to the different dehydration mechanics, the lost bound water in DF and WF process show their own characteristics. This may lead to the different mechanical properties of tested soils. The clayey particles have a great influence on the bound water adsorbed ability of subgrade soils. The more the clay content, the greater the difference of mechanical properties tested between the two forming methods. Moreover, in highway construction of southern China, the wet forming method is recommended for its higher authenticity in simulating the subgrade filed humidity.

Analysis of risk for high-speed trains caused by crosswind in subgrade settlement zones based on CFD-FE coupling

  • Qian Zhang;Xiaopei Cai;Tao Wang;Yanrong Zhang;Shusheng Yang
    • Wind and Structures
    • /
    • 제37권4호
    • /
    • pp.275-287
    • /
    • 2023
  • Subgrade differential settlement of high-speed railways was a pivotal issue that could increase the risk of trains operation. The risk will be further increased when trains in the subsidence zone are affected by crosswinds. In this paper, the computational fluid dynamics (CFD) model and finite element (FE) model were established, and the data transmission interface of the two models was established by fluid-solid interaction (FSI) method to form a systematic crosswind-train-track-subgrade dynamic model. The risk of high-speed train encountering crosswind in settlement area was analyzed. The results showed that the aerodynamic force of the trains increased significantly with the increase in crosswind speed. The aerodynamic force of the trains could reach 125.14 kN, significantly increasing the risk of derailment and overturning. Considering the influence of crosswind, the risk of train operation could be greatly increased. The safety indices and the wheel-rail force both increased with the increase of the wind speed. For the high-speed train running at 350 km/h, the warning value of wind speed was 10.2 m /s under the condition of subgrade settlement with wavelength of 20 m and amplitude of 15 mm.