• 제목/요약/키워드: sub-solution

검색결과 2,552건 처리시간 0.025초

EXISTENCE AND UNIQUENESS OF SQUARE-MEAN PSEUDO ALMOST AUTOMORPHIC SOLUTION FOR FRACTIONAL STOCHASTIC EVOLUTION EQUATIONS DRIVEN BY G-BROWNIAN MOTION

  • A.D. NAGARGOJE;V.C. BORKAR;R.A. MUNESHWAR
    • Journal of applied mathematics & informatics
    • /
    • 제41권5호
    • /
    • pp.923-935
    • /
    • 2023
  • In this paper, we will discuss existence of solution of square-mean pseudo almost automorphic solution for fractional stochastic evolution equations driven by G-Brownian motion which is given as c0D𝛼𝜌 Ψ𝜌 = 𝒜(𝜌)Ψ𝜌d𝜌 + 𝚽(𝜌, Ψ𝜌)d𝜌 + ϒ(𝜌, Ψ𝜌)d ⟨ℵ⟩𝜌 + χ(𝜌, Ψ𝜌)dℵ𝜌, 𝜌 ∈ R. Furthermore, we also prove that solution of the above equation is unique by using Lipschitz conditions and Cauchy-Schwartz inequality. Moreover, examples demonstrate the validity of the obtained main result and we obtain the solution for an equation, and proved that this solution is unique.

다구찌 설계를 이용한 듀플렉스 스테인리스강 S31083용 DL-EPR 시험용액의 최적화 (Optimization of DL-EPR Test Solution for Duplex Stainless Steel S31083 Using Taguchi Design)

  • 정광후;김성종
    • Corrosion Science and Technology
    • /
    • 제20권2호
    • /
    • pp.77-84
    • /
    • 2021
  • This study aims to optimize the DL-EPR test solution for duplex stainless steel S31083 using the Taguchi design. The test solution parameters applied to the Taguchi design are H2SO4, NaCl, KSCN concentration, and temperature. In the experimental design, an orthogonal array of 4 levels 4 factor L16(44) was used. Output values for the orthogonal array were used for resolution (degree of sensitization) and selective etch (Ia) values. The optimal test solution conditions were selected by comparing the normalized S/N ratio for the two reaction properties. As a result, the H2SO4 and NaCl were identified as the main factors influencing the sensitivity measurement, but the delta statistics showed that the KSCN concentration and temperature had relatively low influence. The optimal condition was identified as 1.5 M H2SO4+0.03 M KSCN+1.5M NaCl at 30 ℃. The degree of sensitization presented a tendency to depend on the heat treatment temperature and time in the optimal test solution. This investigation confirmed the possibility of optimizing the experiment solution for the DL-EPR test of stainless steel using the Taguchi technique.

Temperature and Concentration Dependencies of Chemical Equilibrium for Reductive Dissolution of Magnetite Using Oxalic Acid

  • Lee, Byung-Chul;Oh, Wonzin
    • 방사성폐기물학회지
    • /
    • 제19권2호
    • /
    • pp.187-196
    • /
    • 2021
  • Chemical equilibrium calculations for multicomponent aqueous systems involving the reductive dissolution of magnetite (Fe3O4) with oxalic acid (H2C2O4) were performed using the HSC Chemistry® version 9. They were conducted with an aqueous solution model based on the Pitzer's approach of one molality aqueous solution. The change in the amounts and activity coefficients of species and ions involved in the reactions as well as the solution pH at equilibrium was calculated while changing the amounts of raw materials (Fe3O4 and H2C2O4) and the system temperature from 25℃ to 125℃. In particular, the conditions under which Fe3O4 is completely dissolved at high temperatures were determined by varying the raw amount of H2C2O4 and the temperature for a given raw amount of Fe3O4 fed into the aqueous solution. When the raw amount of H2C2O4 added was small for a given raw amount of Fe3O4, no undissolved Fe3O4 was present in the solution and the pH of the solution increased significantly. The formation of ferrous oxalate complex (FeC2O4) was observed. The equilibrium amount of FeC2O4 decreased as the raw amount of H2C2O4 increased.

Periodic Solutions of a System of Piecewise Linear Difference Equations

  • Tikjha, Wirot;Lapierre, Evelina
    • Kyungpook Mathematical Journal
    • /
    • 제60권2호
    • /
    • pp.401-413
    • /
    • 2020
  • In this article we consider the following system of piecewise linear difference equations: xn+1 = |xn| - yn - 1 and yn+1 = xn + |yn| - 1. We show that when the initial condition is an element of the closed second or fourth quadrant the solution to the system is either a prime period-3 solution or one of two prime period-4 solutions.

HCl 용액을 이용한 α-Ga2O3 epitaxy 박막의 습식 식각 (Wet etching of α-Ga2O3 epitaxy film using a HCl-based solution)

  • 최병수;엄지훈;엄해지;전대우;황승구;김진곤;윤영훈;조현
    • 한국결정성장학회지
    • /
    • 제32권1호
    • /
    • pp.40-44
    • /
    • 2022
  • 35 % 농도의 염산 용액을 이용하여 α-Ga2O3 epitaxy 박막의 습식 식각을 수행하였다. 35 % 염산 용액의 온도가 증가함에 따라 α-Ga2O3 epitaxy 박막의 식각 속도가 증가하였고, 본 연구에서 시도한 가장 높은 온도인 75℃에서 119.6 nm/min의 식각 속도를 나타내었다. 식각 반응의 활성화 에너지는 0.776 eV로 계산되었고, HCl 용액에서의 습식 식각은 reaction-limited 반응 기구에 의해 지배됨을 확인하였다. 각 온도에서 식각된 표면들의 AFM 분석결과 식각 용액의 온도가 증가함에 따라 식각된 표면의 표면조도가 증가함을 알 수 있었다.

Pb(Zr0.7Ti0.3)O3 후막의 강유전 특성에 전구체 용액의 코팅요소가 미치는 영향 (Influence of Precursor Solution Coating Parameters on Ferroelectric Properties of Pb(Zr0.7Ti0.3)O3 Thick Films)

  • 박상만;윤상은;이성갑
    • 한국전기전자재료학회논문지
    • /
    • 제19권12호
    • /
    • pp.1092-1098
    • /
    • 2006
  • The influence of the concentration of precursor solution and the number of solution coatings on the densification of the $Pb(Zr_xTi_{1-x})O_3$ (PZT) thick films was studied. PZT powder and PZT precursor solution were prepared by3 sol-gel method and PZT thick films were fabricated by the screen-printing method on the alumina substrates. The composition of powder and precursor solution were PZT(70/30) and PZT(30/70), respectively. The PZT precursor solution was spin-coated on the PZT thick films. A concentration of a coating solution was 0.5 to 2.0 mol/L[M] and the number of coating was repeated from 0 to 6. The XRD patterns of all PZT thick films shelved typical perovskite polycrystalline structure. The porosity of the thick films was decreased with increasing the number of coatings and 6-time coated films with 1.5 M showed the dense microstructure and thickness of about $60{\mu}m$. The relative dielectric constant of the PZT thick film was increased with increasing the number of solution coatings and the thick films with 1.5 M, 6-time coated showed the 698. The remanent polarization the 1.5 M and 6-time coated PZT thick films was $38.3{\mu}C/cm^2$.

Equilibrium calculations for HyBRID decontamination of magnetite: Effect of raw amount of CuSO4 on Cu2O formation

  • Lee, Byung-Chul;Kim, Seon-Byeong;Moon, Jei-Kwon
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2543-2551
    • /
    • 2020
  • Calculations of chemical equilibrium for multicomponent aqueous systems of the HyBRID dissolution of magnetite were performed by using the HSC Chemistry. They were done by using a Pitzer-based aqueous solution model with the recipe of raw materials in experiments conducted at KAERI. The change in the amounts of species and ions and the pH values of the solution at equilibrium was observed as functions of temperature and raw amount of CuSO4. Precipitation of Cu2O occurred at a large amount of CuSO4 added to the solution, while no precipitation of Cu(OH)2 was found at any amounts of CuSO4. The E-pH diagrams for Cu were constructed at various Cu concentrations to provide the effect of the Cu concentration on the pH values at boundaries where the coexistence of Cu+ ion and Cu2O solid occurred. To prevent Cu+ ions from being precipitated to Cu2O, the raw amount of CuSO4 should be adjusted so that the pH value of the solution from the equilibrium calculation is less than that from the E-pH diagram. We provided guidelines for the raw amount of CuSO4 and the pH value of the solution, which prevent the formation of Cu2O precipitates in the HyBRID dissolution experiments for magnetite.

Reductive Dissolution of Spinel-Type Iron Oxide by N2H4-Cu(I)-HNO3

  • Won, Hui Jun;Chang, Na On;Park, Sang Yoon;Kim, Seon Byeong
    • 한국세라믹학회지
    • /
    • 제56권4호
    • /
    • pp.387-393
    • /
    • 2019
  • A N2H4-Cu(I)-HNO3 solution was used to dissolve magnetite powders and a simulated oxide film on Inconel 600. The addition of Cu(I) ions to N2H4-HNO3 increased the dissolution rate of magnetite, and the reaction rate was found to depend on the solution pH, temperature, and [N2H4]. The dissolution of magnetite in the N2H4-Cu(I)-HNO3 solution followed the contracting core law. This suggests that the complexes of [Cu+(N2H4)] formed in the solution increased the dissolution rate. The dissolution reaction is explained by the complex formation, adsorption of the complexes onto the surface ferric ions of magnetite, and the effective electron transfer from the complexes to ferric ions. The oxide film formed on Inconel 600 is satisfactorily dissolved through the successive iteration of oxidation and reductive dissolution steps.

용액 플라즈마를 이용한 콜로이드 및 나노 구조 MnO2의 친환경 합성 (Green Synthesis of Colloidal and Nanostructured MnO2 by Solution Plasma Process)

  • 김혜민
    • 한국재료학회지
    • /
    • 제33권7호
    • /
    • pp.315-322
    • /
    • 2023
  • In the present work, we address the new route for the green synthesis of manganese dioxide (MnO2) by an innovative method named the solution plasma process (SPP). The reaction mechanism of both colloidal and nanostructured MnO2 was investigated. Firstly, colloidal MnO2 was synthesized by plasma discharging in KMnO4 aqueous solution without any additives such as reducing agents, acids, or base chemicals. As a function of the discharge time, the purple color solution of MnO4- (oxidation state +7) was changed to the brown color of MnO2 (oxidation state +4) and then light yellow of Mn2+ (oxidation state +2). Based on the UV-vis analysis we found the optimal discharging time for the synthesis of stable colloidal MnO2 and also reaction mechanism was verified by optical emission spectroscopy (OES) analysis. Secondly, MnO2 nanoparticles were synthesized by SPP with a small amount of reducing sugar. The precipitation of brown color was observed after 8 min of plasma discharge and then completely separated into colorless solution and precipitation. It was confirmed layered type of nanoporous birnessite-MnO2 by X-ray powder diffraction (XRD), fourier-transform infrared spectroscopy (FT-IR), and electron microscopes. The most important merits of this approach are environmentally friendly process within a short time compared to the conventional method. Moreover, the morphology and the microstructure could be controllable by discharge conditions for the appropriate potential applications, such as secondary batteries, supercapacitors, adsorbents, and catalysts.

High-temperature electrochemical corrosion behavior of SA106 Grade B carbon steel with corrosion inhibitors in HyBRID solution

  • Sung-Wook Kim;Sang-Yoon Park;Chang-Hyun Roh;Sun-Byeong Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2256-2262
    • /
    • 2023
  • The electrochemical corrosion behaviors of SA106 Grade B (SA106B) carbon steel in H2SO44-N2H4 and H2SO4-N2H4-CuSO4 solutions at 95 ℃ have been investigated with the addition of commercial corrosion inhibitors (CI#30 and No. 570S), to determine the stability of SA106B in the hydrazine-based reductive metal ion decontamination (HyBRID) process. The potentiodynamic polarization experiment revealed that the corrosion inhibitors were capable of lowering the corrosion rate of SA106B in H2SO4-N2H4 solution. It was found that the corrosion inhibitors induced formation of fixed surface layer on the carbon steel upon the corrosion. This corrosion inhibition performance was reduced in the presence of CuSO4 in the solution owing to the chemical reactions between organic compounds in the corrosion inhibitors and CuSO4. CI#30 showed a better corrosion inhibition effect in the H2SO4-N2H4-CuSO4 solution. Although the corrosion inhibitors can provide better stability to SA106B in the HyBRID solution, their application should be carefully considered because it may result in reduced decontamination performance and increased secondary waste generation.