• Title/Summary/Keyword: sub-pixel

Search Result 272, Processing Time 0.022 seconds

Sub-pixel Image Magnification Using Adaptive Linear Interpolation (적응적인 선형 보간을 이용한 부화소 기반 영상 확대)

  • Yoo, Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.8
    • /
    • pp.1000-1009
    • /
    • 2006
  • We propose an adaptive linear interpolation locating sub-pixels. We utilize a pixel-based parameter in the conventional linear interpolation. To optimally obtain the parameter, we propose a generic interpolation structure including a low pass filter and minimum mean square error. We also propose a simple version of the generic interpolation method, which obtain a closed-form solution. Simulation results show that the proposed method is superior to the state-of-the-art methods such as warped distance linear interpolation and shifted linear interpolation, as well as the conventional method such as the linear interpolation and the cubic convolution interpolation in terms of the subjective and objective image quality.

  • PDF

Effective Application of Close-Range Photogrammetry with Digital Images in Industrial Precise Measurement (산업정밀측정에서 수치영상을 이용한 근접사진측량의 효율적 응용)

  • 이진덕
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.14 no.1
    • /
    • pp.17-25
    • /
    • 1996
  • The development of still video CCD cameras has simplified dramatically the digital imaging process. Still video cameras have flexibility that allows digital image acquisition and on-board image storage without being connected to a computer. The objective of this paper is to evaluate the performance of digital close-range photogrammetric system using the still video camera for dimensional inspection and structural monitoring being required in various industries. Some sub-pixel measurement techniques, which is indispensable for digital image measurement, were suggested. The author carried out the self-calibration of a high resolution DCS420 still video camera and then test application of a structure. The self-calibrating bundle adjustments resulted in object space accuracies which exceed 1 :46,000. It is ascertained that this digital close-range photogrammetric system has high accuracy potential and task effectiveness for industrial applications.

  • PDF

An Image Magnification Using Adaptive Interpolation Based Sub-pixel (부화소 기반의 적응적 보간법을 통한 영상 확대)

  • Park, Dae-Hyun;Yoo, Jea-Wook;Kim, Yoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.9-16
    • /
    • 2008
  • Recently, there are a lot of multimedia products using image interpolation system. However, most interpolation systems in existence suffer visually to some extents from the effects of blurred edges and jagged artifacts in the image. In this paper, we propose a new adaptive linear interpolation system that uses the sub-pixel. The proposed system calculate the warped distance among the pixels of an image by optimizing length parameter. A new cost function is introduced to reflect frequency properties of the origin data in order to improve image quality. Experimental results show that our new algorithm significantly outperforms conventional interpolation methods in subjective quality, and in most cases, in terms of PSNR as well.

Lane Detection and Tracking Algorithm for 3D Fluorescence Image Analysis (3D 형광이미지 분석을 위한 레인 검출 및 추적 알고리즘)

  • Lee, Bok Ju;Moon, Hyuck;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.1
    • /
    • pp.27-32
    • /
    • 2016
  • A new lane detection algorithm is proposed for the analysis of DNA fingerprints from a polymerase chain reaction (PCR) gel electrophoresis image. Although several research results have been previously reported, it is still challenging to extract lanes precisely from images having abrupt background brightness difference and bent lanes. We propose an edge based algorithm for calculating the average lane width and lane cycle. Our method adopts sub-pixel algorithm for extracting rising-edges and falling edges precisely and estimates the lane width and cycle by using k-means clustering algorithm. To handle the curved lanes, we partition the gel image into small portions, and track the lane centers in each partitioned image. 32 gel images including 534 lanes are used to evaluate the performance of our method. Experimental results show that our method is robust to images having background difference and bent lanes without any preprocessing.

DCT-Based Subpixel-Accuracy Motion Estimation Utilizing Shifting Matrix (Shifting Matrix를 이용한 DCT 기반 부화소 단위 움직임 예측 알고리즘)

  • Shin, Jae-Young;Ryu, Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.372-379
    • /
    • 2015
  • The latest video compression standard (such as H.264/AVC and HEVC) utilizes quarter-pel accuracy motion estimation in order to retain detailed motion information. Many sub-pixel motion estimation algorithms used in the spatial domain usually encounters increment of computational complexity due to embedded interpolation algorithm. In this paper, an approach to measure sub-pixel accuracy motion estimation in frequency domain using shifting matrix is proposed. Complexity can be reduced utilizing shifting matrix algorithm in frequency domain and simulation results demonstrate not only higher PSNR but lower bit rates than spatial domain algorithms.

A Fast Volume Rendering Algorithm for Virtual Endoscopy

  • Ra Jong Beom;Kim Sang Hun;Kwon Sung Min
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.1
    • /
    • pp.23-30
    • /
    • 2005
  • 3D virtual endoscopy has been used as an alternative non-invasive procedure for visualization of hollow organs. However, due to computational complexity, this is a time-consuming procedure. In this paper, we propose a fast volume rendering algorithm based on perspective ray casting for virtual endoscopy. As a pre-processing step, the algorithm divides a volume into hierarchical blocks and classifies them into opaque or transparent blocks. Then, in the first step, we perform ray casting only for sub-sampled pixels on the image plane, and determine their pixel values and depth information. In the next step, by reducing the sub-sampling factor by half, we repeat ray casting for newly added pixels, and their pixel values and depth information are determined. Here, the previously obtained depth information is utilized to reduce the processing time. This step is recursively performed until a full-size rendering image is acquired. Experiments conducted on a PC show that the proposed algorithm can reduce the rendering time by 70- 80% for bronchus and colon endoscopy, compared with the brute-force ray casting scheme. Using the proposed algorithm, interactive volume rendering becomes more realizable in a PC environment without any specific hardware.

Assessment of Gradient-based Digital Speckle Correlation Measurement Errors

  • Jian, Zhao;Dong, Zhao;Zhe, Zhang
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.372-380
    • /
    • 2012
  • The optical method Digital Speckle Correlation Measurement (DSCM) has been extensively applied due its capability to measure the entire displacement field over a body surface. A formula of displacement measurement errors by the gradient-based DSCM method was derived. The errors were found to explicitly relate to the image grayscale errors consisting of sub-pixel interpolation algorithm errors, image noise, and subset deformation mismatch at each point of the subset. A power-law dependence of the standard deviation of displacement measurement errors on the subset size was established when the subset deformation was rigid body translation and random image noise was dominant and it was confirmed by both the numerical and experimental results. In a gradient-based algorithm the basic assumption is rigid body translation of the interrogated subsets, however, this is in contradiction to the real circumstances where strains exist. Numerical and experimental results also indicated that, subset shape function mismatch was dominant when the order of the assumed subset shape function was lower than that of the actual subset deformation field and the power-law dependence clearly broke down. The power-law relationship further leads to a simple criterion for choosing a suitable subset size, image quality, sub-pixel algorithm, and subset shape function for DSCM.

Matching Performance Analysis of Upsampled Satellite Image and GCP Chip for Establishing Automatic Precision Sensor Orientation for High-Resolution Satellite Images

  • Hyeon-Gyeong Choi;Sung-Joo Yoon;Sunghyeon Kim;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.103-114
    • /
    • 2024
  • The escalating demands for high-resolution satellite imagery necessitate the dissemination of geospatial data with superior accuracy.Achieving precise positioning is imperative for mitigating geometric distortions inherent in high-resolution satellite imagery. However, maintaining sub-pixel level accuracy poses significant challenges within the current technological landscape. This research introduces an approach wherein upsampling is employed on both the satellite image and ground control points (GCPs) chip, facilitating the establishment of a high-resolution satellite image precision sensor orientation. The ensuing analysis entails a comprehensive comparison of matching performance. To evaluate the proposed methodology, the Compact Advanced Satellite 500-1 (CAS500-1), boasting a resolution of 0.5 m, serves as the high-resolution satellite image. Correspondingly, GCP chips with resolutions of 0.25 m and 0.5 m are utilized for the South Korean and North Korean regions, respectively. Results from the experiment reveal that concurrent upsampling of satellite imagery and GCP chips enhances matching performance by up to 50% in comparison to the original resolution. Furthermore, the position error only improved with 2x upsampling. However,with 3x upsampling, the position error tended to increase. This study affirms that meticulous upsampling of high-resolution satellite imagery and GCP chips can yield sub-pixel-level positioning accuracy, thereby advancing the state-of-the-art in the field.

Extension of the Dynamic Range in the CMOS Active Pixel Sensor Using a Stacked Photodiode and Feedback Structure

  • Jo, Sung-Hyun;Lee, Hee Ho;Bae, Myunghan;Lee, Minho;Kim, Ju-Yeong;Choi, Pyung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.256-261
    • /
    • 2013
  • This paper presents an extension of the dynamic range in a complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) using a stacked photodiode and feedback structure. The proposed APS is composed of two additional MOSFETs and stacked P+/N-well/P-sub photodiodes as compared with a conventional APS. Using the proposed technique, the sensor can improve the spectral response and dynamic range. The spectral response is improved using an additional stacked P+/N-well photodiode, and the dynamic range is increased using the feedback structure. Although the size of the pixel is slightly larger than that of a conventional three-transistor APS, control of the dynamic range is much easier than that of the conventional methods using the feedback structure. The simulation and measurement results for the proposed APS demonstrate a wide dynamic range feature. The maximum dynamic range of the proposed sensor is greater than 103 dB. The designed circuit is fabricated by the $0.35-{\mu}m$ 2-poly 4-metal standard CMOS process, and its characteristics are evaluated.

Frequency-Based Image Analysis of Random Patterns: an Alternative Way to Classical Stereocorrelation

  • Molimard, J.;Boyer, G.;Zahouani, H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.181-193
    • /
    • 2010
  • The paper presents an alternative way to classical stereocorrelation. First, 2D image processing of random patterns is described. Sub-pixel displacements are determined using phase analysis. Then distortion evaluation is presented. The distortion is identified without any assumption on the lens model because of the use of a grid technique approach. Last, shape measurement and shape variation is caught by fringe projection. Analysis is based on two pin-hole assumptions for the video-projector and the camera. Then, fringe projection is coupled to in-plane displacement to give rise to 3D measurement set-up. Metrological characterization shows a resolution comparable to classical (stereo) correlation technique ($1/100^{th}$ pixel). Spatial resolution seems to be an advantage of the method, because of the use of temporal phase stepping (shape measurement, 1 pixel) and windowed Fourier transform (in plane displacements measurement, 9 pixels). Two examples are given. First one is the study of skin properties; second one is a study on leather fabric. In both cases, results are convincing, and have been exploited to give mechanical interpretation.