• 제목/요약/키워드: sub-grain

검색결과 939건 처리시간 0.026초

Gd2O3 첨가에 따른 AC PDP 보호막용 MgO 박막의 광학적.전기적 특성 (Effects of Gd2O3 Addition on Optical and Electrical Properties of MgO Films as a Protective Layer for AC PDPs)

  • 김창일;임은경;박용준;이영진;백종후;최은하;정석;김정석
    • 한국전기전자재료학회논문지
    • /
    • 제20권7호
    • /
    • pp.620-625
    • /
    • 2007
  • The effects of $Gd_2O_3$ addition and sintering condition on optical and electrical properties of MgO films as a protective layer for AC plasma display panels were investigated. Doped MgO films prepared by the e-beam evaporation have a higher ${\Upsilon}$ (secondary electron emission coefficient) than pure MgO protective layer. Relative density and grain size increased with amount of $Gd_2O_3$ up to 100 ppm and then decreased further addition. These results showed that discharge properties and optical properties of MgO protective layers seemed to be closely related with microstructure factors such as relative density and grain size. Good optical and electrical properties of ${\Upsilon}$ of 0.138, surface roughness of 5.77 nm and optical transmittance of 95.76 % were obtained for the MgO+100 ppm $Gd_2O_3$ protective layer sintered at $1700^{\circ}C$ for 5 hrs.

기계적 합성된 분말로부터 펄스전류 활성 소결에 의한 나노구조 3FeAl-Al2O3 복합재료 제조 및 기계적 특성 (Fabrication of Nanostructured 3FeAl-Al2O3 Composite from Mechanically Synthesized Powders by Pulsed Current Activated Sintering and Its Mechanical Properties)

  • 두송이;손인진;도정만;박방주;윤진국
    • 대한금속재료학회지
    • /
    • 제50권6호
    • /
    • pp.449-454
    • /
    • 2012
  • Nanopowder of FeAl and $Al_2O_3$ was synthesized from FeO and Al powders by high energy ball milling. Using the pulsed current activated sintering method, the nanocystalline $Al_2O_3$ reinforced FeAl composite was consolidated within two minutes from mechanically synthesized powders. The advantage of this process is that it allows very quick densification to near theoretical density and prohibits grain growth in nanostuctured materials. The grain size, sintering behavior and hardness of sintered $FeAl-Al_2O_3$ composite were investigated.

Grain Boundary Microcracking in ZrTiO4-Al2TiO5 Ceramics Induced by Thermal Expansion Anisotropy

  • Kim, Ik-Jin;Kim, Hyung-Chul;Lee, Kee-Sung;Han, In-Sub
    • 한국세라믹학회지
    • /
    • 제40권2호
    • /
    • pp.109-112
    • /
    • 2003
  • The grain-boundary microcracking materials in the system $Al_2$TiO$_{5}$ -ZrTiO$_4$(ZAT) is influenced by the thermal expansion anisotropy. The range of ZAT compositions investigated had showed very low thermal expansions of 0.3~1.3$\times$10$^{-6}$ K loin compared to 8.29$\times$10$^{6}$ K of pure ZrTiO$_4$and 0.68$\times$10$^{6}$ K of polycrystalline $Al_2$TiO$_{5}$ , respectively, compared with the theoretical thermal expansion coefficient for a single crystal of $Al_2$TiO$_{5}$ , 9.70$\times$10$^{6}$ K. The low thermal expansion and microcraking temperature are apparently due to a combination of thermal contraction and expansion caused by the large thermal expansion anisotropy of the crystal a ies of the $Al_2$TiO$_{5}$ phase.

Erratum to: "Grain Boundary Microcracking in ZrTiO4-Al2TiO5 Ceramics Induced by Thermal Expansion Anisotropy"

  • Kim, Ik-Jin;Kim, Hyung-Chul;Lee, Kee-Sung;Han, In-Sub
    • 한국세라믹학회지
    • /
    • 제40권3호
    • /
    • pp.317-321
    • /
    • 2003
  • The grain-boundary microcracking materials in the system A1$_2$Ti $O_{5}$ -ZrTi $O_4$(ZAT) is influenced by the thermal expansion anisotropy. The range of ZAT compositions investigated had showed very low thermal expansions of 0.3~1.3$\times$10$^{-6}$K compared to 8.29$\times$10$^{-6}$K of pure ZrTi $O_4$and 0.68$\times$10$^{-6}$K of polycrystalline A1$_2$Ti $O_{5}$ , respectively, compared with the theoretical thermal expansion coefficient for a single crystal of A1$_2$Ti $O_{5}$ , 9.70$\times$10$^{-6}$K. The low thermal expansion and microcraking temperature are apparently due to a combination of thermal contraction and expansion caused by the large thermal expansion anisotropy of the crystal axes of the A1$_2$Ti $O_{5}$ phase.

Zn 도핑을 통한 (K,Na)NbO3-Bi(Ni,Ta)O3 세라믹의 미세구조 및 에너지 저장 물성 제어 (Modulation of Microstructure and Energy Storage Performance in (K,Na)NbO3-Bi(Ni,Ta)O3 Ceramics through Zn Doping)

  • 김주은;박선화;민유호
    • 한국분말재료학회지
    • /
    • 제30권6호
    • /
    • pp.509-515
    • /
    • 2023
  • Lead-free perovskite ceramics, which have excellent energy storage capabilities, are attracting attention owing to their high power density and rapid charge-discharge speed. Given that the energy-storage properties of perovskite ceramic capacitors are significantly improved by doping with various elements, modifying their chemical compositions is a fundamental strategy. This study investigated the effect of Zn doping on the microstructure and energy storage performance of potassium sodium niobate (KNN)-based ceramics. Two types of powders and their corresponding ceramics with compositions of (1-x)(K,Na)NbO3-xBi(Ni2/3Ta1/3)O3 (KNN-BNT) and (1-x)(K,Na)NbO3-xBi(Ni1/3Zn1/3Ta1/3)O3 (KNN-BNZT) were prepared via solid-state reactions. The results indicate that Zn doping retards grain growth, resulting in smaller grain sizes in Zn-doped KNN-BNZT than in KNN-BNT ceramics. Moreover, the Zn-doped KNN-BNZT ceramics exhibited superior energy storage density and efficiency across all x values. Notably, 0.9KNN-0.1BNZT ceramics demonstrate an energy storage density and efficiency of 0.24 J/cm3 and 96%, respectively. These ceramics also exhibited excellent temperature and frequency stability. This study provides valuable insights into the design of KNN-based ceramic capacitors with enhanced energy storage capabilities through doping strategies.

상압소경에 의해 제조된 DyNbO4 소결체의 미세조직과 파괴특성 (Microstructures and Fracture Characteristic of Pressureless-Sintered DyNbO4 body)

  • 김기만;안종관;이병택
    • 한국분말재료학회지
    • /
    • 제9권3호
    • /
    • pp.148-152
    • /
    • 2002
  • The microstructures and indentation fracture of pressureless-sintered $DyNbO_4$ crystalline were investigated as a basic study for the application of weak phase of fibrous monolithic composites. They were comprised with many lamella twins as well as micro-cracks at the grain boundaries. The hardness at room temperature was remarkably low value(575 Hv) due to the low relative density and existence of microcracks at grain boundaries. The main fracture mode was a typical intergranular fracture, and showed remarkable micro-cracking effect. The heavy plastic deformation was observed around the site of indentation. In addition, the $DyNbO_4$ was expected to apply as a weak phase in the fibrous monolithic composites because of the low hardness and easily plastic deformation that could be led the preferable pulled-out and microcracking toughening under the failure.

PMN-PZT계 세라믹스의 압전특성에 미치는 MnO2의 영향 (Effects of MnO2on the Piezoelectric Properties of PMN-PZT-based Ceramics)

  • 김재창;황동연;이미영;유신욱;김영민;어순철;김일호
    • 한국재료학회지
    • /
    • 제14권5호
    • /
    • pp.334-337
    • /
    • 2004
  • Perovskite PMN-PZT-based ceramics were prepared and the$ MnO_2$ doping effects on their piezoelectric properties were investigated. Grain size decreased with increasing the $MnO_2$ content, and the pyrochlore phase was not identified in the sintered PMN-PZT ceramics with 0.01~1.0wt% $MnO_2$. Piezoelectric voltage and charge constants were reduced and mechanical quality factor increased with increasing the $MnO_2$ content. However, electromechanical coupling coefficient slightly decreased with increasing the MnO$_2$ content without regard to the grain size.

An automated analysis tool for the IR absorption spectra of interstellar ices

  • Kim, Chul-Hwan;Lee, Jeong-Eun;Kim, Jaeyeong;Jeong, Woong-Seob
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.57.1-57.1
    • /
    • 2021
  • The icy mantles of interstellar grains are developed by the freeze-out of interstellar molecules and atoms onto grain surfaces. The ice molecules become more complex by surface chemistry induced directly by high energy photons or by the thermal energy diffused over heated grain surface. Therefore, the ice composition is an important tracer of physical conditions where the ices form. Ices have been studied via their absorption features against continuum sources, such as young stellar objects or evolved background stars, in infrared wavelengths. The Spitzer IRS was the most sensitive spectrometer for the observations of infrared ice absorption features. We has been developing an automated analysis tool for the Spitzer IRS spectra, especially for the 15 ㎛ CO2 bending mode. The 15 ㎛ CO2 absorption feature is very useful for the study of accretion process in star formation since its spectral shape varies with thermal condition of the dust grains. Eventually, this tool will cover the whole range of the Spitzer IRS spectrum (5~20 ㎛).

  • PDF

Microstructure Change and Mechanical Properties in Binary Ti-Al Containing Ti3Al

  • Oh, Chang-Sup;Woo, Sang-Woo;Han, Chang-Suk
    • 한국재료학회지
    • /
    • 제26권12호
    • /
    • pp.709-713
    • /
    • 2016
  • Grain morphology, phase stability and mechanical properties in binary Ti-Al alloys containing 43-52 mo1% Al have been investigated. Isothermal forging was used to control the grain sizes of these alloys in the range of 5 to $350{\mu}m$. Grain morphology and volume fraction of ${\alpha}_2$ phase were observed by optical metallography and scanning electron microscopy. Compressive properties were evaluated at room temperature, 1070 K, and 1270 K in an argon atmosphere. Work hardening is significant at room temperature, but it hardly took place at 1070 K and 1270 K because of dynamical recrystallization. The grain morphologies were determined as functions of aluminum content and processing conditions. The transus curve of ${\alpha}$ and ${\alpha}+{\gamma}$ shifted more to the aluminum-rich side than was the case in McCullough's phase diagram. Flow stress at room temperature depends strongly on the volume fraction of the ${\alpha}_2$ phase and the grain size, whereas flow stress at 1070 K is insensitive to the alloy composition or the grain size, and flow stress at 1270 K depends mainly on the grain size. The ${\alpha}_2$ phase in the alloys does not increase the proof stress at high temperatures. These observations indicate that improvement of both the proof stress at high temperature and the room temperature ductility should be achieved to obtain slightly Ti-rich TiAl base alloys.