• Title/Summary/Keyword: sub-cycle

Search Result 1,213, Processing Time 0.026 seconds

Peak-Valley Current Mode Controlled H-Bridge Inverter with Digital Slope Compensation for Cycle-by-Cycle Current Regulation

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1989-2000
    • /
    • 2015
  • In this paper, digital peak current mode control for single phase H-bridge inverters is developed and implemented. The digital peak current mode control is achieved by directly controlling the PWM signals by cycle-by-cycle current limitation. Unlike the DC-DC converter where the output voltage always remains in the positive region, the output of DC-AC inverter flips from positive to negative region continuously. Therefore, when the inverter operates in negative region, the control should be changed to valley current mode control. Thus, a novel control logic circuit is required for the function and need to be analyzed for the hardware to track the sinusoidal reference in both regions. The problem of sub-harmonic instability which is inherent with peak current mode control is also addressed, and then proposes the digital slope compensation in constant-sloped external ramp to suppress the oscillation. For unipolar PWM switching method, an adaptive slope compensation in digital manner is also proposed. In this paper, the operating principles and design guidelines of the proposed scheme are presented, along with the performance analysis and numerical simulation. Also, a 200W inverter hardware prototype has been implemented for experimental verification of the proposed controller scheme.

In Vitro Anti-Neuroblastoma Activity of Thymoquinone Against Neuro-2a Cells via Cell-cycle Arrest

  • Paramasivam, Arumugam;Raghunandhakumar, Subramanian;Priyadharsini, Jayaseelan Vijayashree;Jayaraman, Gopalswamy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8313-8319
    • /
    • 2016
  • We have recently shown that thymoquinone (TQ) has a potent cytotoxic effect and induces apoptosis via caspase-3 activation with down-regulation of XIAP in mouse neuroblastoma (Neuro-2a) cells. Interestingly, our results showed that TQ was significantly more cytotoxic towards Neuro-2a cells when compared with primary normal neuronal cells. In this study, the effects of TQ on cell-cycle regulation and the mechanisms that contribute to this effect were investigated using Neuro-2a cells. Cell-cycle analysis performed by flow cytometry revealed cell-cycle arrest at G2/M phase and a significant increase in the accumulation of TQ-treated cells at sub-G1 phase, indicating induction of apoptosis by the compound. Moreover, TQ increased the expression of p53, p21 mRNA and protein levels, whereas it decreased the protein expression of PCNA, cyclin B1 and Cdc2 in a dose-dependent manner. Our finding suggests that TQ could suppress cell growth and cell survival via arresting the cell-cycle in the G2/M phase and inducing apoptosis of neuroblastoma cells.

Characteristics of Elementary Students' System Thinking in Learning of Water Cycle (물의 순환 학습 상황에서 초등학생의 시스템 사고의 특징)

  • Kim, Bo-Min;Maeng, Seungho
    • Journal of Korean Elementary Science Education
    • /
    • v.39 no.3
    • /
    • pp.412-432
    • /
    • 2020
  • The purpose of this study is to explore the characteristics and the level of fourth grade elementary students' system thinking when they learn the unit of "Journey of Water" in terms of four key elements of system thinking such as understanding of the structure of a system, non-linearity and cyclic features, inter-relations and feedback between system properties, and temporal and invisible aspects of a system. Data included students' worksheets and their responses to a set of Likert-scaled and written assessment items on water cycle. The results showed that the level of students' system thinking did not have any hierarchy in relation to the key elements of water cycle system. In addition, the aspects of individual student's system thinking on its sub-elements were different from each other. Also, there were core ideas of system thinking which were intensively considered according to a given context to understand a complex systemic subject. When students learn water cycle, understanding of non-linearity and inter-relations were weaker compared with other key elements of system thinking. Therefore, if these two factors are taught in advance, it can promote understanding of whole system of water cycle.

Generation of System Requirements for Smart UAV (스마트 무인기 시스템 요건 도출)

  • Lee, Jeong-Jin
    • 시스템엔지니어링워크숍
    • /
    • s.4
    • /
    • pp.17-22
    • /
    • 2004
  • This paper present the brief generation process of system requirements or mart UAV from a development obejective. The current Snart UAV requirements deal with the restricted life cycle from development to test and verification exclusive of full life cycle beacuse of the new technology demonstration research program funded by goverments. The Smart UAV system consists of flight vechicle, avionics, communication link, payload, ground control stationand ground supporting system. In thus paper, top-down flown requirememts are intoduced how to allocate to each sub-system.

  • PDF

Chlorination of TRU/RE/SrOx in Oxide Spent Nuclear Fuel Using Ammonium Chloride as a Chlorinating Agent

  • Yoon, Dalsung;Paek, Seungwoo;Lee, Sang-Kwon;Lee, Ju Ho;Lee, Chang Hwa
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.193-207
    • /
    • 2022
  • Thermodynamically, TRUOx, REOx, and SrOx can be chlorinated using ammonium chloride (NH4Cl) as a chlorinating agent, whereas uranium oxides (U3O8 and UO2) remain in the oxide form. In the preliminary experiments of this study, U3O8 and CeO2 are reacted separately with NH4Cl at 623 K in a sealed reactor. CeO2 is highly reactive with NH4Cl and becomes chlorinated into CeCl3. The chlorination yield ranges from 96% to 100%. By contrast, U3O8 remains as UO2 even after chlorination. We produced U/REOx- and U/SrOx-simulated fuels to understand the chlorination characteristics of the oxide compounds. Each simulated fuel is chlorinated with NH4Cl, and the products are dissolved in LiCl-KCl salt to separate the oxide compounds from the chloride salt. The oxide compounds precipitate at the bottom. The precipitate and salt phases are sampled and analyzed via X-ray diffraction, scanning electron microscope-energy dispersive spectroscopy, and inductively coupled plasma-optical emission spectroscopy. The analysis results indicate that REOx and SrOx can be easily chlorinated from the simulated fuels; however, only a few of U oxide phases is chlorinated, particularly from the U/SrOx-simulated fuels.

Introducing an Efficient and Eco-Friendly Spray-Drying Process for the Synthesis of NCM Precursor for Lithium-ion Batteries

  • Hye-Jin Park;Seong-Ju Sim;Bong-Soo Jin;Hyun-Soo Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.168-177
    • /
    • 2024
  • Ni-rich cathode is one of the promising candidates for high-energy lithium-ion battery applications. Due to its specific capacity, easy industrialization, and good circulation ability, Ni-rich cathode materials have been widely used for lithium-ion batteries. However, due to the limitation of the co-precipitation method, including sewage pollution, and the instability of the long production cycles, developing a new efficient and environmentally friendly synthetic approach is critical. In this study, the Ni0.91Co0.06Mn0.03CO3 precursor powder was successfully synthesized by an efficient spray-drying method using carbonate compounds as a raw material. This Ni0.91Co0.06Mn0.03CO3 precursor was calcined by mixing with LiOH·H2O (5 wt% excess) at 480℃ for 5 hours and then sintered at two different temperatures (780℃/800℃) for 15 hours under an oxygen atmosphere to complete the cathode active material preparation, which is a key component of lithium-ion batteries. As a result, LiNi0.91Co0.06Mn0.03O2 cathode active material powders were obtained successfully via a simple sintering process on the Ni0.91Co0.06Mn0.03CO3 precursor powder. Furthermore, the obtained LiNi0.91Co0.06Mn0.03O2 cathode active material powders were characterized. Overall, the material sintered at 780℃ shows superior electrochemical performance by delivering a discharge capacity of 190.76 mAh/g at 1st cycle (0.1 C) and excellent capacity retention of 66.80% even after 50 cycles.

Propagation Characteristics of Fatigue Microcracks on Smooth Specimen of $2_{1/4}$ Cr-1 Mo Steel ($2_{1/4}$ Cr-1 Mo강의 평활재상의 미소한 표면피로균열의 성장특성)

  • Suh, Chang-Min;Woo, Byung-Chul;Jang, Hui-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.250-250
    • /
    • 1990
  • In this paper, fatigue tests were carried out at stress test levels of 461 MPa, 441 MPa, and 431 MPa by using smooth specimen of$2_{1/4}$ Cr-1 Mo steel with the stress ratio(R) of 0.05. The initiation, growth and coalescense process of the major cracks and sub-cracks among the fatigue cracks on the smooth specimen are investigated and measured under each stress level at a constant cycle ratio by the replica technique with optical microscope. Some of the important results are as follows: In spite of the difference of stress levels, the major crack data gather into a small band in the curve of surface crack length and crack depth against cycle ratio N/Nf. The sub-crack data, however, deviate from the band of the major crack. The growth rates, da/dN, of major and sub-crack plotted against the stress intensity factor range, ${\Delta}K$, have the tendency to be compressed on a relatively small band. But it is more effective to predict fatigue life through major cracks. The propagation behavior of surface microcracks on the smooth specimens coincides with that of the specimen having an artificial small surface defect or through crack.

The Cytotoxic and Apoptotic Effect of Pseudomonas aeruginosa Exotoxin A on Human Leukemia K-562 Cells (인간 백혈병 세포에서 Psuedomonas aeruginosa exotoxin A에 대한 세포독성과 세포자멸사 효과)

  • Chang, Jeong-Hyun;Kwon, Heun-Young
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.39 no.2
    • /
    • pp.68-75
    • /
    • 2007
  • After reports on regression of cancer in humans and animals infected with microbial pathogens date back more than 100 years, much effort has been spent over the years in developing a wild type or attenuated bacterial and purified bacterial proteins for the treatment of cancer. Pseudomonas aeruginosa exotoxin A (ETA) is known to inhibit cell growth and trigger significant cell death in various cancer cells. Although ETA induces apoptosis of cancer cells, its exact mechanism of action is not known yet. Four different assays were performed in this study: morphological assessment of apoptotic cells, cell cytotoxity, annexin-V binding assay, and cell cycle analysis. The proliferation and survival of the K-562 cells treated with ETA were decreased in a dose dependent manner. In addition, the apoptotic body of K-562 cells was induced by ETA treatment in a dose dependent manner. The ETA-induced apoptosis was confirmed by annexin-V binding assay. Flow cytometric analysis was examined to ascertain whether ETA could arrest the cell cycle at the sub-G1 phase. Our results suggest that P. aeruginosa ETA inhibits cell growth and induces apoptosis in human leukemia K-562 cells.

  • PDF

Improving Electrochemical Performance of Ni-rich Cathode Using Atomic Layer Deposition with Particle by Particle Coating Method

  • Kim, Dong Wook;Park, DaSom;Ko, Chang Hyun;Shin, Kwangsoo;Lee, Yun-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.237-245
    • /
    • 2021
  • Atomic layer deposition (ALD) enhances the stability of cathode materials via surface modification. Previous studies have demonstrated that an Ni-rich cathode, such as LiNi0.8Co0.1Mn0.1O2, is a promising candidate owing to its high capacity, but is limited by poor cycle stability. In this study, to enhance the stability of the Ni-rich cathode, synthesized LiNi0.8Co0.1Mn0.1O2 was coated with Al2O3 using ALD. Thus, the surface-modified cathode exhibited enhanced stability by protecting the interface from Ni-O formation during the cycling process. The coated LiNi0.8Co0.1Mn0.1O2 exhibited a capacity of 176 mAh g-1 at 1 C and retained up to 72% of the initial capacity after 100 cycles within a range of 2.8-4.3 V (vs Li/Li+. In contrast, pristine LiNi0.8Co0.1Mn0.1O2 presented only 58% of capacity retention after 100 cycles with an initial capacity of 173 mAh g-1. Improved cyclability may be a result of the ALD coating, which physically protects the electrode by modifying the interface, and prevents degradation by resisting side reactions that result in capacity decay. The electrochemical impedance spectra and structural and morphological analysis performed using electron microscopy and X-ray techniques establish the surface enhancement resulting from the aforementioned strategy.

Basic Study on Sub-cooling System using Ice storage tank (빙축열조를 이용한 냉매과냉각 시스템 기초연구)

  • Lee, Eun-Ji;Lee, Dong-Won;Kim, Yong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.990-995
    • /
    • 2009
  • Experimental basic study was performed to understand the characteristics of sub-cooled refrigerant using a cold heat storage system. This system was made up general vapor-compression refrigeration cycle added sub-cooler and ice storage tank. The purpose of this study are to application use of cold-heat storage systems multiplicity of fields and to understand of sub-cooling system. At the condition using ice storage system, the ice making process was operated during night time by electric power. And then, the refrigerant was sub-cooled using stored cold-heat after being discharged from the air cooling condenser during the day time. Comparing the result at general operation with the operation using sub-cooling system. This study showed the effects of the sub-cooled degree. The cooling performance was increased owing to the sub-cooling of refrigerant during day time, and the compressor consume power was a little decreased. Thus the COP was also increased owing to the sub-cooling of refrigerant.

  • PDF