• Title/Summary/Keyword: sub-cooled liquid nitrogen

Search Result 31, Processing Time 0.025 seconds

A study on the barrier effect with respect to the condition of solid insulation materials in GN2

  • Lee, Hongseok;Mo, Young Kyu;Lee, Onyou;Kim, Junil;Bang, Seungmin;Kang, Jong O;Nam, Seokho;Kang, Hyoungku
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.1
    • /
    • pp.44-47
    • /
    • 2015
  • High voltage superconducting apparatuses have been developed presently around the world under AC and DC sources. In order to improve electrical reliability of superconducting apparatuses with AC and DC networks, a study on the DC as well as the AC electrical breakdown characteristics of cryogenic insulations should be conducted for developing a high voltage superconducting apparatus. Recently, a sub-cooled liquid nitrogen cooling system is known to be promising method for developing a high voltage superconducting apparatus. A sub-cooled liquid nitrogen cooling system uses gaseous nitrogen to control the pressure and enhance the dielectric characteristics. However, the dielectric characteristics of gaseous nitrogen are not enough to satisfy the grade of insulation for a high voltage superconducting apparatus. In this case, the application of solid insulating barriers is regarded as an effective method to reinforce the dielectric characteristics of a high voltage superconducting apparatus. In this paper, it is dealt with a barrier effect on the DC and AC dielectric characteristics of gaseous nitrogen with respect to the position and number of solid insulating barriers. As results, the DC and AC electrical breakdown characteristics by various barrier effects is verified.

Cooling Condition of HTS Power Cable (고온초전도 전력케이블의 냉각조건)

  • 김동락;김승현;양형석;조승연;이제묘
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.35-36
    • /
    • 2002
  • High temperature super conducting(HTS) cable system for power transmission are under development that will be cooled by sub-cooled liquid nitrogen to provide cooling of the cable and termination. The target of the development during the first 3-years stage is 22.9kV/50MVA class and 30m length cold dielectric type 3-phase power cable. The essential features of the HTS cable cryogenic system and performance conditions for the design of power cable will be discussed.

  • PDF

Effects of artificial holes on the cooling efficiency of single grain Y1.5Ba2Cu3O7-y bulk superconductors (단결정 Y1.5Ba2Cu3O7-y 벌크 초전도체의 냉각효율에 대한 인공 구멍의 효과)

  • Kim, Kwang-Mo;Park, Soon-Dong;Jun, Byung-Hyuk;Ko, Tae-Kuk;Kim, Chan-Joong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.1-4
    • /
    • 2012
  • Effects of artificial holes on the cooling efficiency of single grain YBCO bulk superconductors were studied. Single grain YBCO bulk superconductors without artificial holes, with six 2.4 mm holes and six holes filled with Bi-Pb-Cd-Sn metal solder were fabricated by a top-seeded melt growth process for powder compacts with/without holes. Simulation for the cooling rate to a liquid nitrogen temperature (77 K) of YBCO samples was carried out using a finite element method (FEM) and the results are compared with the actual cooling rates of samples in liquid nitrogen. The simulated cooling times for the YBCO sample without holes, with six holes and with six holes filled with the metal solder were 80, 47 and 75 sec. respectively, which are similar to the actual cooling times of 84, 52 and 78 sec. estimated for the same samples cooled in liquid nitrogen. The shorter cooling time of the sample with artificial holes are attributed to the increased surface areas associated with the presence of artificial holes. The metal filling into the holes did not give any remarkable effect on the cooling efficiency.

Numerical Simulation of Cavitating Flows on a Foil by Using Bubble Size Distribution Model

  • Ito, Yutaka;Nagasaki, Takao
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.216-227
    • /
    • 2004
  • A new cavitating model by using bubble size distribution based on bubbles-mass has been proposed. Both liquid and vapor phases are treated with Eulerian framework as a mixture containing minute cavitating bubbles. In addition vapor phase consists of various sizes of vapor bubbles, which are distributed to classes based on their mass. The bubble number-density for each class was solved by considering the change of the bubble-mass due to phase change as well as generation of new bubbles due to heterogeneous nucleation. In this method, the bubble-mass is treated as an independent variable, and the other dependent variables are solved in spatial coordinates and bubble-mass coordinate. Firstly, we employed this method to calculate bubble nucleation and growth in stationary super-heated liquid nitrogen, and bubble collapse in stationary sub-cooled one. In the case of bubble growth in super-heated liquid, bubble number-density of the smallest class based on its mass is increased due to the nucleation. These new bubbles grow with time, and the bubbles shift to larger class. Therefore void fraction of each class is increased due to the growth in the whole class. On the other hand, in the case of bubble collapse in sub-cooled liquid, the existing bubbles are contracted, and then they shift to smaller class. It finally becomes extinct at the smallest one. Secondly, the present method is applied to a cavitating flow around NACA00l5 foil. Liquid nitrogen and liquid oxygen are employed as working fluids. Cavitation number, $\sigma$, is fixed at 0.15, inlet velocities are changed at 5, 10, 20 and 50m/s. Inlet temperatures are 90K in case of liquid nitrogen, and 90K and 1l0K in case of liquid oxygen. 110K of oxygen is corresponding to the 90K of nitrogen because of the same relative temperature to the critical one, $T_{r}$=$T/T_c^{+}$. Cavitating flow around the NACA0015 foils was properly analyzed by using bubble size distribution. Finally, the method is applied to a cavitating flow in an inducer of the LE-7A hydrogen turbo-pump. This inducer has 3 spiral foils. However, for simplicity, 2D calculation was carried out in an unrolled channel at 0.9R cross-section. The channel moves against the fluid at a peripheral velocity corresponding to the inducer revolutions. Total inlet pressure, $Pt_{in}$, is set at l00KPa, because cavitation is not generated at a design point, $Pt_{in}$=260KPa. The bubbles occur upstream of the foils and collapse between them. Cavitating flow in the inducer was successfully predicted by using the bubble size distribution.

  • PDF

Pressure Drop Characteristics on HTS Power Cables with LN2 Flow (초전도 케이블 냉각유로에서의 압력강하 특성)

  • Koh Deuk-Yong;Yeom Han-Kil;Lee Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.81-86
    • /
    • 2006
  • High temperature superconducting (HTS) power cable requires forced sub-cooled LN2 flow cooling. Liquid nitrogen is circulated by a pump and cooled back by cooling system. Typical operating temperature range is expected to be between 65 K and 77 K. The HTS power cable needs sufficient cooling to overcome its low temperature heat load. For successful cooling, the hydraulic characteristics of the HTS power cable must be well investigated to design the cables. Especially, the pressure drop in the cable is an important design parameter, because the pressure drop decides the length of the cable, size of the coolant circulation pump and circulation pressure, etc. This paper describes measurement and investigation of the pressure drop of the cooling system. In order to reduce the total pressure drop of the cooling system, the flow rate of liquid nitrogen must be controlled by rotational speed of the circulation pump.

Cooling Test of The HTS Power Cable (초전도케이블 냉각시험)

  • 염한길;고득용;홍용주;김익생;김춘동;김도형
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.295-297
    • /
    • 2003
  • Cryogenic systems is requirement for the operation of HTS power cables. In general, HTS power cables require temperature below 77K, a temperature that can be achieved from the liquid nitrogen or sub-cooled LN2. HTS power cable is needed for sufficient refrigeration to overcome its low temperature heat loading. This loading typically comes in two forms : (1) heat leaks from the surroundings and (2) internal heat generation. This paper is a explanation for the cooling test of 10m HTS power cable.

  • PDF

Conceptual Design of 1 MVA HTS Transformer (1MVA 고온 초전도 변압기 개념설계)

  • 김우석;한송엽;최경달;주형길;홍계원
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.233-236
    • /
    • 2002
  • A conceptual design of single phase high Tc superconducting (HTS) 1MVA transformer was presented in this paper. The rated voltages of each sides of the transformer are 22.9kV /6.6kV respectively. Double pancake windings of BSCCO-2223 HTS tape and the room temperature shell type core are adopted. The HTS tapes of windings are going to be cooled down to 65K by sub-cooled liquid nitrogen. A cryostat made of nonmagnetic and nonconducting material with a bore is going to be used in order to locate the core out of the cryostat. This conceptual design will be modified and a fabrication of the machine is going to be based on the presented design in this paper.

  • PDF

Simulated winding temperature distribution of HTS transformer cooled by sub-cooled liquid nitrogen

  • Han, J.H.;Choi, K.D.;Kim, T.Y.;Chang, T.;Kim, W.S.;Kim, S.H.;Hahn, S.Y.;Kim, S.R.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.4
    • /
    • pp.51-54
    • /
    • 2004
  • A 1 MV A single phase high temperature superconducting (HTS) transformer was manufactured. In order to reduce AC loss generated in the HTS winding, winding was concentrically arranged. Operation temperature is set at 65K to increase the critical current and reduce the amount of HTS tape usage and the volume. The cryogenic system which consists of main cryostat with the windings and secondary cryostat with 2 GM coolers and cryopump on top and heat exchanger inside is also designed and the cooling performance is simulated with Fluent. Temperature distribution of the windings is investigated whether the windings are kept under designed operation temperature.

Cooling Performance Test of the KEPCO HTS Power Cable

  • Yang, H.S.;Kim, D.L.;Sohn, S.H.;Lim, J.H.;Choi, H.O.;Choi, Y.S.;Ryoo, H.S.;Hwang, S.D.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.2
    • /
    • pp.41-43
    • /
    • 2009
  • The HTS power cable system of 3-phase 100-m class has been tested at the KEPCO's Gochang power testing center in Korea during 8,000 hours or more for investigating long-term operating performance. The system is rated 22.9kV, 1250A and is cooled with sub cooled liquid nitrogen. Several cooling performance tests such as cooling capacity, heat load, AC loss, temperature stability and thermal cycle were performed at operating temperature of 66.4K and several different temperatures.

Cryogenic Systems for HTS Power Cables

  • Yeom, Han-Kil;Koh, Deuk-Yong;Lee, Bong-Kyu;Kim, Ig-Seang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.133-135
    • /
    • 2003
  • Cryogenic systems are requirement for the operation of HTS power cables. In general, HTS power cables require temperature below 77K, a temperature that can be achieved from the liquid nitrogen at latm or sub-cooled LN2 above latm. HTS power cable needs sufficient refrigeration to overcome its low temperature heat loading. This loading typically cones in two forms : (1) heat leaks from the surroundings and (2) internal heat generation. This paper explains the cooling test system of 10m HTS power cable. This system is composed of storage dewar, auto fill system, core cryostat and cold-box. Storage dewar is a LN2 storage tank and auto fill system is a LN2 supply device to the sub-cooler, Core cryostat is a LN2 flow line. Cold box is a control unit of temperature and flow rate. It is composed of control valve, flow meter, sub-cooler and circulation pump, etc..