• Title/Summary/Keyword: sub-alkaline

Search Result 259, Processing Time 0.028 seconds

Various Problems in Oxygen-evolution Reaction Catalysts in Alkaline Conditions and Perovskites Utilization (저온형 알칼라인 산소발생반응의 문제점과 perovskites촉매 개발 동향)

  • Lee, Jin Goo
    • Ceramist
    • /
    • v.22 no.2
    • /
    • pp.182-188
    • /
    • 2019
  • Alternative energy sources to the systems using hydrocarbon fuels have been actively developed due to exhaustion of fossil fuels and issue of global warming by CO2. Fuel cells have attracted great attentions to solve these issues as electricity can be produced with product of clean H2O by using H2-O2 as a fuel. Besides, using reverse reactions make it possible to produce H2 and O2 gas from electrolysis of water. There are various fuel cells systems depending on the types of electrolyte, and in this mini-reviews, the main aim is to focus on perovskite oxides as a catalyst for oxygen-evolution reactions in alkaline electrolysis and its potential to application of alkaline electrolysis systems.

Grain Growth Behavior of (K0.5Na0.5)NbO3 Ceramics Doped with Alkaline Earth Metal Ions

  • Il-Ryeol Yoo;Seong-Hui Choi;Kyung-Hoon Cho
    • Korean Journal of Materials Research
    • /
    • v.33 no.4
    • /
    • pp.135-141
    • /
    • 2023
  • The volatilization of alkali ions in (K,Na)NbO3 (KNN) ceramics was inhibited by doping them with alkaline earth metal ions. In addition, the grain growth behavior changed significantly as the sintering duration (ts) increased. At 1,100 ℃, the volatilization of alkali ions in KNN ceramics was more suppressed when doped with alkaline earth metal ions with smaller ionic size. A Ca2+-doped KNN specimen with the least alkali ion volatilization exhibited a microstructure in which grain growth was completely suppressed, even under long-term sintering for ts = 30 h. The grain growth in Sr2+-doped and Ba2+-doped KNN specimens was suppressed until ts = 10 h. However, at ts = 30 h, a heterogeneous microstructure with abnormal grains and small-sized matrix grains was observed. The size and number of abnormal grains and size distribution of matrix grains were considerably different between the Sr2+-doped and Ba2+-doped specimens. This microstructural diversity in KNN ceramics could be explained in terms of the crystal growth driving force required for two-dimensional nucleation, which was directly related to the number of vacancies in the material.

Purification and Characterization of an Alkaline Protease Produced by Alkalophilic Bacillus sp. DK1122 (호알칼리성 Bacillus sp. DK1122 균주가 생산하는 알칼리성 단백질 분해효소의 정제 및 특성)

  • Lee, Hyungjae;Yoo, Ji-Seung;Bai, Dong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.333-340
    • /
    • 2016
  • An alkaline protease was purified and characterized from an alkalophilic microorganism, Bacillus sp. DK1122, isolated from soil in central Korea. The optimum temperature and pH for the growth of the producer strain were 40℃ and pH 9.0, respectively. The protease was produced aerobically at 40℃ after 24 h incubation in modified Horikoshi I medium (pH 9.0) containing 0.5% (w/v) glucose, 0.8% (w/v) yeast extract, 0.5% (w/v) polypeptone, 0.1% (w/v) K2HPO4, 0.02% (w/v) MgSO4·7H2O, 1% (w/v) Na2CO3, and 3% (w/v) NaCl. The alkaline protease was purified by 70% ammonium sulfate precipitation of the culture supernatant of Bacillus sp. DK1122, followed by CM-Sepharose chromatography. The molecular weight of the enzyme was estimated to be 27 kDa on the basis of SDS-PAGE. The optimum temperature and pH for the protease activity were 60℃ and pH 9.0, respectively. Addition of CaCl2 increased the thermal stability of the purified protease, where 90% of protease activity was retained at 60℃ for up to 3 h. Consequently, it is expected that the alkaline protease from this study, exhibiting stability at pH 7–9 and 60℃, may be promising for application in the food and detergent industries.

Study on the Coating Electrode for the Alkaline Water Electrolysis (알칼리 수전해용 코팅 전극에 관한 연구)

  • MIN-JI KANG;CHEOL-HWI RYU;GAB-JIN HWANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.575-580
    • /
    • 2023
  • An electrode was prepared by dip-coating NiFe2O4 powder on stainless steel (SUS) support for the application in the alkaline water electrolysis. The prepared electrode was analyzed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDXS), and was evaluated for the voltage properties with the change of current density in oxygen evolution reaction (OER) and hydrgen evolution reaction (HER) using 1, 3 and 7 M KOH solution. From the SEM and EDXS analysis, it was confirmed that the prepared electrode had NiFe2O4 on the SUS support. In OER and HER, the voltage in the 7 M KOH solution had a value of 1.35 and -1.90 V at 0.2 and -0.2 A/cm2 of the current density, respectively. It was considered that the prepared electrode could be use as an electrode in the alkaline water electrolysis from the experimental results.

Citric Acid Reduces Alkaline Stress-induced Chlorosis, Oxidative Stress, and Photosynthetic Disturbance by Regulating Growth Performance, Antioxidant Activity and ROS Scavenging in Alfalfa

  • Lee, Ki-Won;Lee, Sang-Hoon;Song, Yowook;Park, Hyung Soo;Woo, Jae Hoon;Choi, Bo Ram;Lim, Eun A;Rahman, Md Atikur
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.3
    • /
    • pp.210-216
    • /
    • 2021
  • Pollution of agricultural soil by alkaline salts, such as Na2CO3, is a critical and long-lasting problem in cultivable land. The aim of the study was to examine the putative role of citric acid (CA) in alleviating Na2CO3-stress in alfalfa. In this study, Na2CO3 significantly induced leaf chlorosis, inhibited plant growth and photosynthesis related parameters, increased hydrogen peroxide (H2O2) and reduced major antioxidant enzymes (SOD, CAD, APX) in alfalfa. However, the presence of CA these negative effects of Na2CO3-stress largely recovered. Interestingly, expression of antioxidant and ion transporter genes (Fe-SOD, CAT, APX, DHAR and NHX1) involved in Reactive oxygen species (ROS) homeostasis and oxidative stress tolerance in alfalfa. These findings suggest that CA-mediated Na2CO3 stress alleviation is an ecofriendly approach that would be useful to local farmer for alfalfa and other forage crop cultivation in alkaline soils.

Preparation of 27Ni6Zr4O143M(M=Mg, Ca, Sr, or Ba)O/70 Zeolite Y Catalysts and Hydrogen-rich Gas Production by Ethanol Steam Reforming

  • Kim, Dongjin;Lee, Jun Su;Lee, Gayoung;Choi, Byung-Hyun;Ji, Mi-Jung;Park, Sun-Min;Kang, Misook
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2073-2080
    • /
    • 2013
  • In this study the effects of adding alkaline-earth (IIA) metal oxides to NiZr-loaded Zeolite Y catalysts were investigated on hydrogen rich production by ethanol steam reforming (ESR). Four kinds of alkaline-earth metal (Mg, Ca, Sr, or Ba) oxides of 3.0% by weight were loaded between the $Ni_6Zr_4O_{14}$ main catalytic species and the microporous Zeolite Y support. The characterizations of these catalysts were examined by XRD, TEM, $H_2$-TPR, $NH_3$-TPD, and XPS. Catalytic performances during ESR were found to depend on the basicity of the added alkaline-earth metal oxides and $H_2$ production and ethanol conversion were maximized to 82% and 98% respectively in 27($Ni_6Zr_4O_{14}$)3MgO/70Zeolite Y catalyst at $600^{\circ}C$. Many carbon deposits and carbon nano fibers were seen on the surface of $30Ni_6Zr_4O_{14}$/70Zeolite Y catalyst but lesser amounts were observed on alkaline-earth metal oxide-loaded 27($Ni_6Zr_4O_{14}$)3MO/70Zeolite Y catalysts in TEM photos after ESR. This study demonstrates that hydrogen yields from ESR are closely related to the acidities of catalysts and that alkaline-earth metal oxides reduce the acidities of 27($Ni_6Zr_4O_{14}$)3MO/70Zeolite Y catalysts and promote hydrogen evolution by preventing progression to hydrocarbons.

Electrochemical Activity of a Blue Anatase TiO2 Nanotube Array for the Oxygen Evolution Reaction in Alkaline Water Electrolysis

  • Han, Junhyeok;Choi, Hyejin;Lee, Gibaek;Tak, Yongsug;Yoon, Jeyong
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.76-81
    • /
    • 2016
  • An anatase TiO2 nanotube array (NTA) was fabricated by anodization and successive heat treatments. When the anatase TiO2 NTA was cathodically polarized, its color changed to blue, and it could be used as an electrochemically active anode for an oxygen evolution reaction (OER) in alkaline water electrolysis. The structure of the blue anatase TiO2 NTA was controlled by the anodization conditions and its catalytic activity increased with an increase of the surface area. The activity of the blue anatase TiO2 NTA gradually reduced with the continued OER because of the partial oxidation of Ti3+ to Ti4+. However, an intermittent cathodic regeneration process could significantly slow its reduction rate. The blue anatase TiO2 NTA could be an alternative anode for alkaline water electrolysis.

Thermophilic Anaerobic Digestion of Polyhydroxybutyrate with and without Thermo-alkaline Pretreatment (열적-알칼리성 전처리 유무에 따른 폴리하이드록시부티레이트의 고온 혐기성 소화 영향 연구)

  • Jihyeon Lee;Joonyeob Lee
    • Journal of Environmental Science International
    • /
    • v.33 no.2
    • /
    • pp.121-129
    • /
    • 2024
  • The study investigated the effect of thermo-alkaline pretreatment on the solubilization of polyhydroxybutyrate (PHB) and its potential to enhance of thermophilic anaerobic digestion, focusing on biochemical methane potential (BMP) and methane production rate, using two different particle sizes of PHB (1500 ㎛ and 400 ㎛). Thermo-alkaline pretreatment tests were conducted at 90 ℃ for 24 hours with varying NaOH dosages from 0-80% (w/w). BMP tests with untreated PHB exhibited methane production ranging from 150.4~225.4 mL CH4/g COD and 21.5~24.2 mL CH4/g VSS/d, indicating higher methane production for smaller particle sizes of PHB, 400 ㎛. Thermo-alkaline pretreatment tests achieved a 95.3% PHB solubilization efficiency when 400 ㎛ PHB particles were treated with 80% NaOH dosage at 90 ℃ for 24 hours. BMP tests with pretreated PHB showed substantial improvement in thermophilic anaerobic digestion, with an increase of up to 112% in BMP and up to 168% in methane production rate. The results suggest that a combined pretreatment process, including physical (400 ㎛ PHB particles) and thermo-alkaline (90 ℃, 40-80% NaOH dosage, and 24 hours reaction time), is required for high-rate thermophilic anaerobic digestion of PHB with enhanced methane production.

A Study on the Field Application of Alkaline Tunnel Wastewater to Neutralization Using CO2 (터널시공 시 이산화탄소(CO2)를 이용한 알칼리성 폐수의 중화처리 현장적용 연구)

  • Park, Young-Jin;Lee, Ho-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.8
    • /
    • pp.27-34
    • /
    • 2020
  • Strong alkaline waste water is generated in large quantities due to using Concrete, shotcrete and various compounds in tunnel construction sites. As the release of this alkaline waste water will contaminate the stream water, it has to be neutralized. Currently, this waste water is mainly neutralized by using sulfuric acid or hydrochloric acid, but the risks of corrosion and handling of facilities are inherent and the chemical control act requires strict management measures. Therefore, using CO2 (carbon dioxide) as an alternative has been highlighted and various indoor experiment studies have been conducted to prove its potential. However, it is difficult to apply CO2 to the site because it is still completely lacking in field application research and shows different characteristics from indoor experiments. In this study, the actual site applicability is verified through field testing.

Biochemical Characterization of a Novel Alkaline and Detergent Stable Protease from Aeromonas veronii OB3

  • Manni, Laila;Misbah, Asmae;Zouine, Nouhaila;Ananou, Samir
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.358-365
    • /
    • 2020
  • An organic solvent- and bleach-stable protease-producing strain was isolated from a polluted river water sample and identified as Aeromonas veronii OB3 on the basis of biochemical properties (API 20E) and 16S rRNA sequence analysis. The strain was found to hyper-produce alkaline protease when cultivated on fish waste powder-based medium (HVSP, 4080 U/ml). The biochemical properties and compatibility of OB3 with several detergents and additives were studied. Maximum activity was observed at pH 9.0 and 60℃. The crude protease displayed outstanding stability to the investigated surfactants and oxidants, such as Tween 80, Triton X-100, and H2O2, and almost 36% residual activity when incubated with 1% SDS. Remarkably, the enzyme demonstrated considerable compatibility with commercial detergents, retaining more than 100% of its activity with Ariel and Tide (1 h, 40℃). Moreover, washing performance of Tide significantly improved by the supplementation of small amounts of OB3 crude protease. These properties suggest the potential use of this alkaline protease as a bio-additive in the detergent industry and other biotechnological processes such as peptide synthesis.