• Title/Summary/Keyword: sub bearing

Search Result 271, Processing Time 0.032 seconds

Development of Pump-Drive Turbine with Hydrostatic Bearing for Supercritical CO2 Power Cycle Application (정압 베어링을 적용한 초임계 CO2 발전용 펌프-구동 터빈 개발)

  • Lee, Donghyun;Kim, Byungock;Park, Mooryong;Yoon, Euisoo
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.153-160
    • /
    • 2020
  • In this paper, we present a hydrostatic bearing design and rotordynamic analysis of a pump-and-drive turbine module for a 250-kW supercritical CO2 cycle application. The pump-and-drive turbine module consists of the pump and turbine wheel, assembled to a shaft supported by two hydrostatic radial and thrust bearings. The rated speed is 21,000 rpm and the rated power is 143 kW. For the bearing operation, we use high-pressure CO2 as the lubricant, which is supplied to the bearing through the orifice restrictor. We calculate the bearing stiffness and flow rate for various orifice diameters, and then select the diameter that provides the maximum bearing stiffness. We also conduct a rotordynamic analysis based on the design parameters of the pump-and-drive turbine module. The predicted Campbell diagram shows that there is no critical speed below the rated speed, owing to the high stiffness of the bearings. Furthermore, the predicted damping ratio indicates that there is no unstable mode. We conduct the operating tests for the pump and drive turbine modules within the supercritical CO2 cycle test loop. The pressurized CO2, at a temperature of 136℃, is supplied to the turbine and we monitor the shaft vibration during the test. The test results show that there is no critical speed below the rated speed, and the shaft vibration is controlled to below 3 ㎛.

Application of the optimal fuzzy-based system on bearing capacity of concrete pile

  • Kun Zhang;Yonghua Zhang;Behnaz Razzaghzadeh
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.25-41
    • /
    • 2024
  • The measurement of pile bearing capacity is crucial for the design of pile foundations, where in-situ tests could be costly and time needed. The primary objective of this research was to investigate the potential use of fuzzy-based techniques to anticipate the maximum weight that concrete driven piles might bear. Despite the existence of several suggested designs, there is a scarcity of specialized studies on the exploration of adaptive neuro-fuzzy inference systems (ANFIS) for the estimation of pile bearing capacity. This paper presents the introduction and validation of a novel technique that integrates the fire hawk optimizer (FHO) and equilibrium optimizer (EO) with the ANFIS, referred to as ANFISFHO and ANFISEO, respectively. A comprehensive compilation of 472 static load test results for driven piles was located within the database. The recommended framework was built, validated, and tested using the training set (70%), validation set (15%), and testing set (15%) of the dataset, accordingly. Moreover, the sensitivity analysis is performed in order to determine the impact of each input on the output. The results show that ANFISFHO and ANFISEO both have amazing potential for precisely calculating pile bearing capacity. The R2 values obtained for ANFISFHO were 0.9817, 0.9753, and 0.9823 for the training, validating, and testing phases. The findings of the examination of uncertainty showed that the ANFISFHO system had less uncertainty than the ANFISEO model. The research found that the ANFISFHO model provides a more satisfactory estimation of the bearing capacity of concrete driven piles when considering various performance evaluations and comparing it with existing literature.

Reliability analysis of piles based on proof vertical static load test

  • Dong, Xiaole;Tan, Xiaohui;Lin, Xin;Zhang, Xuejuan;Hou, Xiaoliang;Wu, Daoxiang
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.487-496
    • /
    • 2022
  • Most of the pile's vertical static load tests in construction sites are the proof load tests, which is difficult to accurately estimate the ultimate bearing capacity and analyze the reliability of piles. Therefore, a reliability analysis method based on the proof load-settlement (Q-s) data is proposed in this study. In this proposed method, a simple ultimate limit state function based on the hyperbolic model is established, where the random variables of reliability analysis include the model factor of the ultimate bearing capacity and the fitting parameters of the hyperbolic model. The model factor M = RuR / RuP is calculated based on the available destructive Q-s data, where the real value of the ultimate bearing capacity (RuR) is obtained by the complete destructive Q-s data; the predicted value of the ultimate bearing capacity (RuP) is obtained by the proof Q-s data, a part of the available destructive Q-s data, that before the predetermined load determined by the pile test report. The results demonstrate that the proposed method can easy and effectively perform the reliability analysis based on the proof Q-s data.

Fractal kinetic characteristics of uranium leaching from low permeability uranium-bearing sandstone

  • Zeng, Sheng;Shen, Yuan;Sun, Bing;Tan, Kaixuan;Zhang, Shuwen;Ye, Wenhao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1175-1184
    • /
    • 2022
  • The pore structure of uranium-bearing sandstone is one of the critical factors that affect the uranium leaching performance. In this article, uranium-bearing sandstone from the Yili Basin, Xinjiang, China, was taken as the research object. The fractal characteristics of the pore structure of the uranium-bearing sandstone were studied using mercury intrusion experiments and fractal theory, and the fractal dimension of the uranium-bearing sandstone was calculated. In addition, the effect of the fractal characteristics of the pore structure of the uranium-bearing sandstone on the uranium leaching kinetics was studied. Then, the kinetics was analyzed using a shrinking nuclear model, and it was determined that the rate of uranium leaching is mainly controlled by the diffusion reaction, and the dissolution rate constant (K) is linearly related to the pore specific surface fractal dimension (DS) and the pore volume fractal dimension (DV). Eventually, fractal kinetic models for predicting the in-situ leaching kinetics were established using the unreacted shrinking core model, and the linear relationship between the fractal dimension of the sample's pore structure and the dissolution rate during the leaching was fitted.

Experimental analysis of rocking shallow foundation on cohesive sand

  • Moosavian, S.M. Hadi;Ghalandarzadeh, Abbas;Hosseini, Abdollah
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.597-608
    • /
    • 2022
  • One of the most important parameters affecting nonlinearsoil-structure interaction, especially rocking foundation, is the vertical factor of safety (F.Sv). In this research, the effect of F.Sv on the behavior of rocking foundations was experimentally investigated. A set of slow, cyclic, horizontal loading tests was conducted on elastic SDOF structures with different shallow foundations. Vertical bearing capacity tests also were conducted to determine the F.Sv more precisely. Furthermore, 10% silt was mixed with the dry sand at a 5% moisture content to reach the minimum apparent cohesion. The results of the vertical bearing capacity tests showed that the bearing capacity coefficients (Nc and Nγ) were influenced by the scaling effect. The results of horizontal cyclic loading tests showed that the trend of increase in capacity was substantially related to the source of nonlinearity and it varied by changing F.Sv. Stiffness degradation was found to occur in the final cycles of loading. The results indicated that the moment capacity and damping ratio of the system in models with lower F.Sv values depended on soil specifications such cohesiveness or non-cohesiveness and were not just a function of F.Sv.

Numerical study of strength reduction-induced capillary rise effect for unsaturated soil

  • Shwan, Bestun J.
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.385-393
    • /
    • 2022
  • Previous studies postulated insignificant capillary rise (hc) effect above the water table (Hw) for unsaturated soils. In addition, these studies utilised dry unit weight above Hw. This paper, therefore, addresses the effect of these postulations on strength where the influence of hc using a modified upper bound approach, Discontinuity Layout Optimization (UNSAT-DLO) for a simulated soil was predicted. Two different parametric studies to model passive earth pressure and bearing capacity problems are carried out to provide an insight into the effect of capillary rise on strength. Significant increase in strength, owing to unsaturated conditions, was obtained where the maximum increase was when suction slightly less or greater than the air entry suction. On the other hand, the results showed a negative effect of hc. For example, up to 8.24% decrease in passive thrust (Pp) was obtained at Hw=0 m when hc rose 1 m from 0 m. To put this into perspective, this was equivalent to a decrease of about 2° in 𝜙 at Hw=0 m and hc =0 m in order to obtain the same result at hc =1 m. For the bearing capacity problem, the effect was seen to be higher, up to 18.4% decrease in N𝛾 was obtained when hc rose from 0 m to 2.5 m at Hw =0 m. In addition, the results revealed a negative influence of assigning dry unit weight above Hw or hc.. However, considerable increase in strength was obtained when unsaturated unit weight above hc was assigned.

Bearing Capacity Reinforcing Effect of Forest Road Surface by Construction of Sub-base using Geosynthetics (토목섬유 활용 노반 조성을 통한 임도 노면지지력 강화효과 분석)

  • Hwang, Jin-Seong;Ji, Byoung-Yun;Lee, Kwan-Hee;Kweon, Hyeong-Keun;Kim, Myung-Hwan
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.2
    • /
    • pp.166-173
    • /
    • 2018
  • This study was carried out to establish the standard of sub-base facility which can strengthen road surface bearing capacity for smooth passage of logging trucks in forest road as the size of the logging truck has been increased in order to improve the efficiency of timber transportation. The results of reinforcement effect analysis of the surface bearing capacity by the thickness of sub-base prepared with the optimum aggregate mix ratio using geosynthetics for forest road on the soft ground in the Forest Technology and Management Research Center are as follows. The surface bearing capacity of CBR exceeding 15% was found to be sufficient when the sub-base was constructed over 0.2 m depth of laying gravels with installation of geosynthetics after digging out subsoil. However, there is no significant difference in reinforcement effect of surface bearing capacity by types of geosynthetics. And, it was found that the surface bearing capacity was insufficient in the installation of sub-base. Therefore, in the case of soft ground, It is possible to secure the reinforcement of the surface bearing capacity for the smooth passage of heavy logging trucks by sub-base, that was constructed over 0.2 m depth of laying gravels with installation of geosynthetics after digging out subsoil.

NRRO Analysis of HDD Ball Bearings with Geometric Imperfections (기하학적 형상오차를 갖는 정보저장기기용 볼베어링의 NRRO 해석)

  • 김영철;최상규;윤기찬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.810-816
    • /
    • 2001
  • In this paper, we theoretically analyzed the NRRO(the non-repeatable run-out) of a ball bearing with geometric imperfection. The quasi-static and dynamic analysis of a ball bearing was performed to calculate the displacement of shaft center caused by the form errors while the shaft is rotating. From consideration of the generating mechanism of NRRO, it is found that the waviness of one ball generates vibrations with nf$\sub$b/${\pm}$f$\sub$c/(where n is odd) components. Also it is confirmed that the outer race waviness of the order n = jZ${\pm}$1 generates vibration with jZf$\sub$c/ components. The form errors of ball bearing elements were precisely measured and NRRO of a ball bearing was calculated using the measured data. It is concluded that the ball bearings must has large ball number and small ball diameter to obtain low NRRO.

  • PDF

An Empirical Formula of Bearing Capacity on Prebored and Precast Steel Piles (강관 매입말뚝의 지지력 공식 제안)

  • Park, Jong-Jeon;Kim, Do-Hyun;Jung, Gyung-Ja;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.6
    • /
    • pp.5-20
    • /
    • 2021
  • In this study, a modified empirical formula for estimating the bearing capacity of the steel pipe prebored and precast pile was proposed by performing 20 cases of real-scale field pile loading tests. The proposed formula will be based on expanded SPT N-value in order to consider the realistic condition of the surrounding soil. The formula is proposed based on a statistic approach of the data points from the field pile loading test, in order to ensure safe engineering practice while finding a reliable formula. The statistical analysis of the data points from the loading test indicated that the existing formula has been underestimated the bearing capacity of the prebored and precast pile. The proposed formula estimates 15% and 20% higher pile End bearing capacity (qt=230Pdriven(kN/m2)) and the shaft resistance (fmax=3.0NsE(kN/m2)) compared to the existing formula. The accuracy and the stability of the proposed formula was verified by comparing the estimated results with additional field test data. The verification process showed that the proposed formula was estimated to be more accurate than the existing formula.

A Study on Sub-base Composition Effect of Forest Road Using Geosynthetics for Passage of Large Logging Trucks (대형 목재운송차량 통행에 적합한 토목섬유 활용 임도 노반조성 효과분석)

  • Hwang, Jin-seong;Ji, Byoung-yun;Kweon, Hyeong-keun;Lee, Kwan-hee
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.3
    • /
    • pp.287-293
    • /
    • 2018
  • This study was carried out to provide surface bearing capacity reinforcement of forest road by sub-base facilities based on a soft ground use of geosynthetics to prevent the damage of the road surface passing heavy logging trucks and to pass smoothly heavy truck against growing timber harvesting. The analysis of the road surface bearing capacity as progressing time and the increase of the number of passage of heavy logging trucks were conducted experimental section of forest road on the soft ground in the Forest Technology and Management Research Center. As a result, it was found that the road surface bearing capacity were stabilized at CBR of 15% or more, the effect of reinforcement by type of geosynthetics showed no significant difference after the lapse of about 1 year. After reaching the passage of 300 times for the heavy logging trucks on the sub-base construction section, the settlements was stabilized below the allowable standard of 50 mm, road surface bearing capacity also improved to more than CBR 20% and there was no significant difference in the thickness of the sub-base. However, in the section where the sub-base is not constructed, it is found that the lack of surface bearing capacity with the settlements more than the allowable standard is not possible to pass the heavy logging trucks. Therefore, in order to reinforce the road surface bearing capacity of the soft ground for the passage of the heavy logging trucks, it is necessary to construct a sub-base of at least 0.2 m when using geosynthetics.