• Title/Summary/Keyword: styrene carbonate

Search Result 17, Processing Time 0.018 seconds

Reflectance and Flexural Modulus of ABS/TiO2 Composite Sheets (ABS/TiO2 복합체 쉬트의 반사율과 굴곡 탄성률)

  • Kim, Jun Hong;Yoon, Kwan Han
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.103-107
    • /
    • 2014
  • Poly(acrylonitrile-butadiene-styrene) (ABS) composite sheets containing titanium dioxide ($TiO_2$), barium sulfate ($BaSO_4$), calcium carbonate ($CaCO_3$) were prepared by using a co-rotating twin screw extruder, and the reflectance and flexural modulus of the composite sheets were measured. The fillers were well dispersed in ABS matrix. The reflectance of composite sheet was increased with increasing $TiO_2$ and $BaSO_4$ content. Sheet having $TiO_2$ 20 wt% composition, with 5~20 wt% $BaSO_4$ resulted in more than 95% of reflectance. The flexural modulus of composite sheet was increased from 1864 MPa for $ABS/TiO_2/BaSO_4$ 85/10/5 (w/w/w) to 3134 MPa for $ABS/TiO_2/BaSO_4$ 55/20/25 (w/w/w).

An Experimental Study on the Thermal Shock Behavior of PC/PET Alloy (PC/PET 합금의 열충격 특성에 관한 연구)

  • 유인자;이영순;이재학
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.2
    • /
    • pp.64-71
    • /
    • 1995
  • Tests were performed to evaluate the effect of thermal shock behavior on the mechanical properties of PC(poly-carbonate) and PET(polyethylene-terephthalate) with MBS(methylmethacrylate-butadiene-styrene) alloy. Five different material weight fraction for PC/PET were employed : 0/100, 25/75, 50/50, 75/25, and 100/0. Three different weight fraction of MBS were added to each PC/PET : 0, 3, and 9. Therefore fifteen different types of PC/PET/MBS were prepared using single screw extrude. and injection molding machine. One thermal shock cycle consisted of each one hour stay at -$40^{\circ}C$ chamber and $+80^{\circ}C$ chamber without delay. Specimens were thermal shocked up to 20 and 40 cycles. Specific mechanical properities considered in this study include tensile, izod impact, and high rate Impact behaviors. In addition, the morphology of the fractured surface after Izod impact testing was investigated by the SEM (scanning electron microscope).

  • PDF

Improvement of Cycle Performance of Graphite-Silicon Monoxide Mixture Negative Electrode in Lithium-ion Batteries (흑연과 실리콘 일산화물의 혼합물로 구성된 리튬이온 이차전지용 음극의 사이클 성능개선 연구)

  • Kim, Haebeen;Kim, Tae Hun;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.4
    • /
    • pp.155-163
    • /
    • 2019
  • Mixture electrodes of a graphite having a good cycle performance and a silicon monoxide (SiO) having a high capacity are fabricated and their cycle performances are evaluated as negative electrodes for lithium-ion batteries. The electrode prepared by mixing the natural graphite and carbon-coated SiO in a mass ratio of 9:1 shows a reversible capacity of $480mAh\;g^{-1}$, 33% higher than that of graphite. However, the capacity deteriorates continuously upon cycling due to the volume change of silicon monoxide. In this study, the factors that can improve the cycle performance have been discussed through the change in the configurations of the electrode and the electrolyte. The electrode using the carboxymethyl cellulose (CMC) binder shows the best cycle performance compared to the conventional binders. The electrode sing the CMC and styrene-butadiene rubber (SBR) binder not only has almost the similar cycle characteristics with the electrode using the CMC binder but also has the better rate capability. When the fluoroethylene carbonate (FEC) is used as an electrolyte additive, the cycle life is improved. However, the electrolyte with 5 wt% of FEC is appropriate because the rate capability decreases when the content of FEC is increased to 10 wt%. In addition, when the mass loading of the electrode is lowered, the cycle performance is greatly improved. Also, enhanced cycle performance is achieved using the roughened Cu current collector polished by abrasive paper.

Effect of Binder and Electrolyte on Electrochemical Performance of Si/CNT/C Anode Composite in Lithium-ion Battery (리튬이온 이차전지에서 Si/CNT/C 음극 복합소재의 전기화학적 성능에 대한 바인더 및 전해액의 효과)

  • Choi, Na Hyun;Kim, Eun Bi;Yeom, Tae Ho;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.327-333
    • /
    • 2022
  • In this study, silicon/carbon nanotube/carbon (Si/CNT/C) composites for anode were prepared to improve the volume expansion of silicon used as a high-capacity anode material. Si/CNT were prepared by electrostatic attraction of the positively charged Si and negatively charged CNT and then hydrothermal synthesis was performed to obtain the spherical Si/CNT/C composites. Poly(vinylidene fluoride) (PVDF), polyacrylic acid (PAA), and styrene butadiene rubber (SBR) were used as binders for electrode preparation, and coin cell was assembled using 1.0 M LiPF6 (EC:DMC:EMC = 1:1:1 vol%) electrolyte and fluoroethylene carbonate (FEC) additive. The physical properties of Si/CNT/C anode materials were analyzed using SEM, EDS, XRD and TGA, and the electrochemical performances of lithium-ion batteries were investigated by charge-discharge cycle, rate performance, dQ/dV and electrochemical impedance spectroscopy tests. Also, it was confirmed that both capacity and rate performance were significantly improved using the PAA/SBR binder and 10 wt% FEC-added electrolyte. It is found that Si/CNT/C have the reversible capacity of 914 mAh/g, the capacity retention ratio of 83% during 50 cycles and the rate performance of 70% in 2 C/0.1 C.

Preliminary Study on Properties of Layer-by-Layer Assembled GCC with Polyelectrolytes (고분자전해질의 LbL 흡착 처리에 의해 개질된 중질탄산칼슘의 특성 기초 연구)

  • Lee, Je-Gon;Ryu, Jae-Ho;Sim, Kyu-Jeong;Ahn, Jung-Eon;Lee, Hak-Lae;Youn, Hye-Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.35-42
    • /
    • 2011
  • In this study, ground calcium carbonate (GCC) was modified by Layer-by-Layer (LbL) multilayering with polyelectrolytes. Cationic polyacrylamide (C-PAM) and poly sodium 4-styrene sulfonate (PSS) were used as cationic and anionic polyelectrolytes to modify GCC. The characteristics of the modified GCC were examined in terms of zeta potential and particle size with the addition level of polyelectrolyte and layer number. The GCC could form an assembly of cationic and anionic polyelectrolytes through consecutive adsorption process. The zeta potential of the modified GCC moved toward the cationicity and reached the plateau with the increase of the addition level of C-PAM. With layering of anionic PSS, the GCC had the negative charge. The particle size was dependent on the zeta potential. It was also observed by optical microscope. As the PSS was in the presence of the outermost layer, the GCC showed the better dispersability. It indicated that the surface charge and particle size can be controlled by adjusting the addition level of polyelectrolyte and the layer number.

Effect of Shear Condition on Washless Polyelectrolytes Multilayering Treatment on GCC (전단 조건이 중질탄산칼슘의 무세척 고분자전해질 다층흡착 처리에 미치는 영향)

  • Lee, Jegon;Sim, Kyujeong;Lee, Hak Lae;Youn, Hye Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.5
    • /
    • pp.51-60
    • /
    • 2014
  • To find a practical application approach of polyelectrolyte multilayering (PEM) on inorganic filler, we introduced PEM process without washing step and investigated the effect of shear condition on the washless PEM treatment of ground calcium carbonate (GCC). Washless multilayering on GCC was conducted under various shear conditions such as stirring, homogenization, and ultrasonication. Highly charged polyelectrolytes combination of polydiallyldimethylammonium chloride (PDADMAC) and poly sodium 4-styrene sulfonate (PSS) and low charged polyelectrolytes combination with cationic starch and anionic polyacrylamide (PAM) were compared. In the case of highly charged polyelectrolytes combination, shear conditions did not affect the zeta potential and the particle size of treated GCC. However, the modified GCC particles with low charged polyelectrolytes were more dispersed under higher shear condition while maintaining the zeta potential. In addition, GCC was successfully modified through laboratory inline washless polyelectrolyte multilayering system which consists of homogenizers and pumps.

Modification of GCC with Poly-DADMAC and PSS with Different Molecular Weights and its Effect on the Paper Properties (Poly-DADMAC과 PSS의 분자량을 달리한 중질탄산칼슘의 개질과 종이 물성에 미치는 영향)

  • Ahn, Jungeon;Lee, Jegon;Lee, Hye Yoon;Youn, Hye Jung;Lee, Hak Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.5
    • /
    • pp.21-31
    • /
    • 2012
  • In this study, we modified the surface of ground calcium carbonate (GCC) with polyelectrolytes with different molecular weight using Layer-by-Layer (LbL) multilayering technique and investigated its effect on the paper properties. Polydiallydimethylammonium chloride (poly-DADMAC) and poly sodium 4-styrene sulfonate (PSS) which have different molecular weights were used for LbL multilayering. Zeta potential and particle size of the LbL modified GCC were measured. After preparation of handsheets, their structural and mechanical properties were evaluated. The zeta potential and average particle size of the modified GCC were affected by the molecular weight of anionic polyelectrolyte (PSS). The zeta potential was higher and the particle size was smaller when GCC was treated by PSS with high molecular weight compared to the case with low molecular weight of PSS. The tensile and internal bond strength of the handsheets was increased with an increase in the number of layers on GCC particles, but the molecular weight of polyelectrolyte did not significantly affect the paper strength.