DOI QR코드

DOI QR Code

Reflectance and Flexural Modulus of ABS/TiO2 Composite Sheets

ABS/TiO2 복합체 쉬트의 반사율과 굴곡 탄성률

  • Kim, Jun Hong (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Yoon, Kwan Han (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 김준홍 (금오공과대학교 에너지융합소재공학부) ;
  • 윤관한 (금오공과대학교 에너지융합소재공학부)
  • Received : 2013.10.07
  • Accepted : 2013.10.30
  • Published : 2014.01.25

Abstract

Poly(acrylonitrile-butadiene-styrene) (ABS) composite sheets containing titanium dioxide ($TiO_2$), barium sulfate ($BaSO_4$), calcium carbonate ($CaCO_3$) were prepared by using a co-rotating twin screw extruder, and the reflectance and flexural modulus of the composite sheets were measured. The fillers were well dispersed in ABS matrix. The reflectance of composite sheet was increased with increasing $TiO_2$ and $BaSO_4$ content. Sheet having $TiO_2$ 20 wt% composition, with 5~20 wt% $BaSO_4$ resulted in more than 95% of reflectance. The flexural modulus of composite sheet was increased from 1864 MPa for $ABS/TiO_2/BaSO_4$ 85/10/5 (w/w/w) to 3134 MPa for $ABS/TiO_2/BaSO_4$ 55/20/25 (w/w/w).

이축압출공정을 이용하여 poly(acrylonitrile-butadiene-styrene)(ABS)에 titanium dioxide($TiO_2$), barium sulfate($BaSO_4$), calcium carbonate($CaCO_3$)를 함량별로 첨가하여 복합체 쉬트를 제조하였고 복합체 쉬트의 반사율과 굴곡 탄성률을 측정하였다. ABS에 첨가된 충전제의 분산성이 우수한 것을 형태학을 통해 알 수 있었다. $TiO_2$$BaSO_4$의 함량에 따라 복합체 쉬트의 반사율이 증가하였고, 특히 $TiO_2$ 20 wt%에 $BaSO_4$를 5~20 wt%를 첨가한 복합체 쉬트의 경우 반사율이 95%이상이 얻어졌다. 굴곡 탄성률 또한 $TiO_2$$BaSO_4$의 함량에 따라 증가하여 $ABS/TiO_2/BaSO_4$ 조성비 85/10/5(w/w/w)의 1864 MPa에서 $ABS/TiO_2/BaSO_4$ 조성비 55/20/25(w/w/w)의 3134 MPa로 증가하였다.

Keywords

Acknowledgement

Supported by : 금오공과대학교

References

  1. Y. M. Kim and C. H. Lee, Polymer Science and Technology, 3, 379 (1992).
  2. D. W. Jin, K. H. Shon, B. K. Kim, and H. M. Jeong, J. Appl. Polym. Sci., 70, 705 (1998). https://doi.org/10.1002/(SICI)1097-4628(19981024)70:4<705::AID-APP9>3.0.CO;2-U
  3. L. A. Utracki, Commercial Polymer Blend, Chapman&Hall, UK, 1998.
  4. C. H. Chien and Z. P. Chen, Microsyst. Technol., 15, 383 (2009). https://doi.org/10.1007/s00542-008-0723-z
  5. H. J. Kim, D. W. Kim, and S. W. Kim, Polymer(Korea), 36, 761 (2012).
  6. Z. Sun, J. Chang, N. Zhao, W. Jin, and Y. Wang, Optik, 212, 760 (2010).
  7. B. Y. Joo and D. H. Shin, Displays, 31, 87 (2010). https://doi.org/10.1016/j.displa.2010.02.004
  8. C. F. Chen, C. C. Wu, and J. H. Wu, Optik, 121, 847 (2010). https://doi.org/10.1016/j.ijleo.2008.09.040
  9. A. Tagaya, S. Ishii, K. Yokoyama, E. Higuchi, and Y. Koike, Jpn. J. Appl. Phys., 41, 2241 (2002). https://doi.org/10.1143/JJAP.41.2241
  10. R. Lu, S. Gauza, and S. T. Wu, Mol. Cryst. Liq. Cryst., 488, 246 (2008). https://doi.org/10.1080/15421400802240698
  11. Y. H. Ju, J. H. Park, J. H. Lee, J. Y. Lee, K. B. Nahm, J. H. Ko, and J. H. Kim, J. Opt. Soc. Korea, 12, 25 (2008). https://doi.org/10.3807/JOSK.2008.12.1.025
  12. G. H. Kim, Eur. Polym. J., 41, 1729 (2005). https://doi.org/10.1016/j.eurpolymj.2005.02.029
  13. G. H. Kim, W. J. Kim, S. M. Kim, and J. G. Son, Displays, 26, 37 (2005). https://doi.org/10.1016/j.displa.2004.11.001