Browse > Article
http://dx.doi.org/10.5229/JKES.2019.22.4.155

Improvement of Cycle Performance of Graphite-Silicon Monoxide Mixture Negative Electrode in Lithium-ion Batteries  

Kim, Haebeen (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University)
Kim, Tae Hun (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University)
Ryu, Ji Heon (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University)
Publication Information
Journal of the Korean Electrochemical Society / v.22, no.4, 2019 , pp. 155-163 More about this Journal
Abstract
Mixture electrodes of a graphite having a good cycle performance and a silicon monoxide (SiO) having a high capacity are fabricated and their cycle performances are evaluated as negative electrodes for lithium-ion batteries. The electrode prepared by mixing the natural graphite and carbon-coated SiO in a mass ratio of 9:1 shows a reversible capacity of $480mAh\;g^{-1}$, 33% higher than that of graphite. However, the capacity deteriorates continuously upon cycling due to the volume change of silicon monoxide. In this study, the factors that can improve the cycle performance have been discussed through the change in the configurations of the electrode and the electrolyte. The electrode using the carboxymethyl cellulose (CMC) binder shows the best cycle performance compared to the conventional binders. The electrode sing the CMC and styrene-butadiene rubber (SBR) binder not only has almost the similar cycle characteristics with the electrode using the CMC binder but also has the better rate capability. When the fluoroethylene carbonate (FEC) is used as an electrolyte additive, the cycle life is improved. However, the electrolyte with 5 wt% of FEC is appropriate because the rate capability decreases when the content of FEC is increased to 10 wt%. In addition, when the mass loading of the electrode is lowered, the cycle performance is greatly improved. Also, enhanced cycle performance is achieved using the roughened Cu current collector polished by abrasive paper.
Keywords
Silicon Monoxide; Graphite; Mixture Electrode; Cycle Performance; Lithium-Ion Batteries;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Y. S. Jung, K. T. Lee, J. H. Ryu, D. Im, and S. M. Oh, 'Sn-Carbon Core-Shell Powder for Anode in Lithium Secondary Batteries' J. Electrochem. Soc., 152, A1452 (2005).   DOI
2 S.-M. Kim, B. Lee, J. G. Lee, J. B. Lee, J. H. Ryu, H.-T. Kim, Y. G. Kim, and S. M. Oh, 'Poly(phenanthrenequinone)-Poly(acrylic acid) Composite as a Conductive Polymer Binder for Submicrometer-Sized Silicon Negative Electrodes', J. Kor. Electrochem. Soc., 19, 87 (2016).   DOI
3 J. Li, R. B. Lewis, and J. R. Dahn, 'Sodium Carboxymethyl Cellulose A Potential Binder for Si Negative Electrodes for Li-Ion Batteries', Electrochem. Solid-State Lett., 10, A17 (2007).   DOI
4 N.-S. Choi, S.-Y. Ha, Y. Lee, J. Y. Jang, M.-H. Jeong, W. C. Shin, and M. Ue, 'Recent Progress on Polymeric Binders for Silicon Anodes in Lithium-Ion Batteries', J. Electrochem. Sci. Technol., 6, 35 (2015).   DOI
5 Z. Karkar, D. Guyomard, L. Roue, and B. Lestriez, 'A comparative study of polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) binders for Si-based electrodes', Electrochim. Acta, 258, 453 (2017).   DOI
6 A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov, and G. Yushin, 'Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid', ACS Appl. Mater. Interfaces, 2, 3004 (2010).   DOI
7 P. Parikh, M. Sina, A. Banerjee, X. Wang, M. S. D'Souza, J.-M. Doux, E. A. Wu, O. Y. Trieu, Y. Gong, Q. Zhou, K. Snyder, and Y. S. Meng, 'Role of Polyacrylic Acid (PAA) Binder on the Solid Electrolyte Interphase in Silicon Anodes', Chem. Mater., 31, 2535 (2019).   DOI
8 J.-S. Bridel, T. Azais, M. Morcrette, J.-M. Tarascon, and D. Larcher, 'Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries', Chem. Mater., 22, 1229 (2010).   DOI
9 T. Jaumann, J. Balach, M. Klose, S. Oswald, U. Langklotz, A. Michaelis, J. Eckert, and L. Giebeler, 'SEIcomponent formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries: the role of electrode preparation, FEC addition and binders', Phys. Chem. Chem. Phys., 17, 24956 (2015).   DOI
10 H. Zhao, X. Yu, J. Li, B. Li, H. Shao, L. Li, and Y. Deng, 'Film-forming electrolyte additives for rechargeable lithium-ion batteries: progress and outlook', J. Mater. Chem. A, 7, 8700 (2019).   DOI
11 C. Xu, F. Lindgren, B. Philippe, M. Gorgoi, F. Bjorefors, K. Edstrom, and T. Gustafsson, 'Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive', Chem. Mater., 27, 2591 (2015).   DOI
12 T. Kim, S. Park, and S. M. Oh, 'Solid-State NMR and Electrochemical Dilatometry Study on $Li^+$ Uptake/Extraction Mechanism in SiO Electrode' J. Electrochem. Soc., 154, A1112 (2007).   DOI
13 S.-H. Moon, S.-J. Kim, M.-C. Kim, J.-Y. So, J.-E. Lee, Y.-K. Shin, W.-G. Bae, and K.-W. Park, 'Stress-relieved Si anode on a porous Cu current collector for highperformance lithium-ion batteries' Mater. Chem. Phys., 223, 152 (2019).   DOI
14 X. Ke, Y. Cheng, J. Liu, L. Liu, N. Wang, J. Liu, C. Zhi, Z. Shi, and Z. Guo, 'Hierarchically Bicontinuous Porous Copper as Advanced 3D Skeleton for Stable Lithium Storage' ACS Appl. Mater. Interfaces, 10, 13552 (2018).   DOI
15 S. Choi, T.-H. Kim, J.-I. Lee, J. Kim, H.-K. Song, and S. Park, 'General Approach for High-Power Li-Ion Batteries: Multiscale Lithographic Patterning of Electrodes' ChemSusChem, 7, 3483, (2014).
16 S. Lee, N. Go, J.H. Ryu, and J. Mun, 'Multidimensional Conducting Agents for a High-Energy-Density Anode with SiO for Lithium-Ion Batteries' J. Electrochem. Sci. Technol., 10, 244 (2019).   DOI
17 Z. Liu, Q. Yu, Y. Zhao, R. He, M. Xu, S. Feng, S. Li, L. Zhou, and L. Mai, 'Silicon oxides: a promising family of anode materials for lithium-ion batteries' Chem. Soc. Rev., 48, 285 (2019).   DOI
18 K. W. Kim, H. Park, J. G. Lee, J. Kim, Y.-U. Kim, J. H. Ryu, J. J. Kim, and S. M. Oh, 'Capacity variation of carbon-coated silicon monoxide negative electrode for lithium-ion batteries' Electrochim. Acta, 103, 226 (2013).   DOI
19 K. W. Kim, J. G. Lee, H. Park, J. Kim, J. H. Ryu, Y.-U. Kim, and S. M. Oh, 'Effect of Lithium Bis(oxalate)borate as an Electrolyte Additive on Carboncoated SiO Negative Electrode' J. Korean Electrochem. Soc., 17, 49-56, 2014.   DOI
20 M.N. Obrovac and L. Christensen, 'Structural Changes in Silicon Anodes during Lithium Insertion/Extraction' Electrochem. Solid-State Lett., 7, A93 (2004).   DOI
21 A. Hohl, T. Wieder, P.A. van Aken, T.E.Weirich, G. Denninger, M. Vidal, S. Oswald, C. Deneke, J. Mayer, H. Fuess, 'An interface clusters mixture model for the structure of amorphous silicon monoxide (SiO)' J. Non-Cryst. Solids, 320, 255 (2003).   DOI
22 Y. Nagao, H. Sakaguchi, H. Honda, T. Fukunaga, T. Esaka, 'Structural analysis of pure and electrochemically lithiated SiO using neutron elastic scattering' J. Electrochem. Soc., 151, A1572 (2004).   DOI
23 J. Jung, J. Jang, O. B. Chae, T. Yoon, J. H. Ryu, and S. M. Oh, 'Reinforcement of an electrically conductive network with ethanol as a dispersing agent in the slurry preparation step' J. Power Sources, 287, 359 (2015).   DOI
24 T. Izawa, A. F. Arif, S. Taniguchia, K. Kamikubo, H. Iwasaki, and T. Ogi, 'Improving the performance of Liion battery carbon anodes by in-situ immobilization of $SiO_x$ nanoparticles' Mater. Res. Bull., 112, 16 (2019).   DOI
25 T. Hirose, M. Morishita, H. Yoshitake, and T. Sakai, 'Investigation of carbon-coated SiO phase changes during charge/discharge by X-ray absorption fine structure' Solid State Ionics, 304, 1 (2017).   DOI
26 H.-M. Shin, C.-H. Doh, D.-H. Kim, H.-S. Kim, K.-H. Ha, B.-S. Jin, H.-S. Kim, S.-I. Moon, K.-W. Kim, and D.-H. Oh, 'High Coulombic Efficiency Negative Electrode(SiO-Graphite) for Lithium Ion Secondary Battery' J. Kor. Electrochem. Soc., 11, 47 (2008).   DOI
27 C.-M. Park, J.-H. Kim, H. Kim, and H.-J, Sohn, 'Li-alloy based anode materials for Li secondary batteries' Chem. Soc. Rev., 39, 3115 (2010).   DOI
28 J.M. Tarason, M. Armand, 'Issues and challenges facing rechargeable lithium batteries' Nature, 414, 359 (2001).   DOI
29 S.R. Sivakkumar, J.Y. Nerkar, A. G. Pandolfo, 'Rate capability of graphite materials as negative electrodes in lithium-ion capacitors' Electrochem. Acta, 55, 3330 (2010).   DOI
30 T.-H. Kim, J.-S. Park , S.K. Chang , S. Choi, J.H. Ryu, and H.-K. Song, 'The Current Move of Lithium Ion Batteries Towards the Next Phase' Adv. Energy Mater., 2, 860 (2012).   DOI
31 A. Casimir, H. Zhang, O. Ogoke, J.C. Amine, J. Lu, and G. Wu, 'Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation' Nano Energy, 27, 359 (2016).   DOI
32 X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.-J. Cheng, 'Silicon based lithium-ion battery anodes: A chronicle perspective review', Nano Energy, 31, 113 (2017).   DOI
33 M.N. Obrovac, and V.L. Chevrier, 'Alloy Negative Electrodes for Li-Ion batteries' Chem. Rev., 114, 11444 (2014).   DOI
34 J.H. Ryu, J.W. Kim, Y.-E. Sung, and S.M. Oh, 'Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries' Electrochem. Solid-State Lett., 7, A306 (2004).   DOI
35 J. Entwistle, A. Rennie, and S. Patwardhan, 'A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond' J. Mater. Chem. A, 6, 18329 (2018).   DOI
36 B.M. Bang, H. Kim, and S. Park, 'Structuring of Bulk Silicon Particles for Lithium-Ion Battery Applications' J. Electrochem. Sci. Tech., 2, 157 (2011).   DOI
37 N. Umirov, D.-H. Seo, K.-N. Jung, H.-Y. Kim, and S.-S. Kim, 'Ni added Si-Al Alloys with Enhanced $Li^+$ Storage Performance for Lithium-Ion Batteries' J. Electrochem. Sci. Technol., 10, 82 (2019).   DOI
38 J.-I. Lee, and S.Park, 'High-performance porous silicon monoxide anodes synthesized via metal-assisted chemical etching' Nano Energy, 2, 146 (2013).   DOI
39 J. W. Kim, J. H. Ryu, K. T. Lee and S. M. Oh, 'Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries' J. Power Sources, 147, 227 (2005).   DOI