• Title/Summary/Keyword: styrene(St)

Search Result 69, Processing Time 0.022 seconds

Strength properties of Polymer-modified Sandwich panel core using non-structural lightweight Aggregate (비구조용 경량 골재를 충진재로 활용한 폴리머 개질 샌드위치 패널 심재의 강도 특성)

  • 노정식;도정윤;문경주;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.775-780
    • /
    • 2002
  • Sandwich panel made by foamed styrene and ployuretane has been used generally in the construction area because of the high thermal conductivity and light weight but they occur harmful gases to both bodies and environments in the high temperature over $50^{\circ}C$. So, the purpose of this study is to investigate the physical properties of light-weight panel using the non-structural lightweight aggregate as a part of the substitution of foamed styrene and ployuretane. This paper dealt with the effect of the addition of polymer dispersion such as SBR, St/BA-1 and St/BA-2 having polymer-cement ratio as 5, 10, 15% and the filling ratio of continuous void as 50, 60% on the strength of polymer-modified sandwich panel core. From the results, we could know that the compressive and flexural strength of the sandwich panel core using non-structural lightweight aggregate and polymer dispersion such as SBR, St/BA-1 and St/BA-2 tended to be increased with an increase in the polymer-cement ratio and the filling ratio of continuous void.

  • PDF

Poly(n-butyl acrylate-co-methyl methacrylate) and Poly(n-butyl acrylate-co-styrene)/Silicate Nanocomposites Prepared by Emulsion Polymerization

  • Park, Yeong-Suk;Chung, In-Jae
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.425-430
    • /
    • 2003
  • Two types of poly(n-butyl acrylate) copolymer/silicate nanocomposites have been produced: poly(n-butyl acrylate-co-methyl methacrylate) [P(BA-co-MMA)]/silicate nanocomposites and poly(n-butyl acrylate-co-styrene) [P(BA-co-ST)]/silicate nanocomposites. The P(BA-co-MMA)/silicate nanocomposites shows the exfoliated structures but a P(BA-co-ST)/silicate nanocomposites have intercalated structures, because the BA/MMA comonomer has a higher polarity (e-value in Q-e scheme) than the BA/ST comonomer. The BA/MMA comonomer expanded the interlayer space of the silicate wider than did the BA/ST comonomer. The thermal degradation onset point of the P(BA-co-MMA)/silicate nanocomposites was 43$^{\circ}C$ higher than that of pure P(BA-co-MMA). P(BA-co-MMA)T5%, P(BA-co-MMA)T10%, and P(BA-co-MMA)T20% exhibit 134,302, and 195% increases, respectively, in their storage moduli at -20$^{\circ}C$ relative to the pure copolymer.

Synthesis and Properties of Nonfluoro Aminated Poly(vinylbenzyl chloride-co-ethyl methacrylate-co-styrene) Anion Exchange Membranes for MCDI Process (막 축전식 탈염용 비불소계 아민화 Poly(vinylbenzyl chloride-co-ethyl methacrylate-co-styrene) 음이온교환막의 합성 및 특성)

  • Koo, Jin-Sun;Kwak, Noh-Seok;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.564-572
    • /
    • 2012
  • A terpolymer of vinylbenzyl chloride-co-ethyl methacrylate-co-styrene (VBC-EMA-St) was prepared for membrane capacitive deionization (MCDI) by radical polymerization and amination reaction of various amination times. Nonfluoro aminated VBC-EMA-St anion-exchange membranes were characterized by Fourier transform infrared (FTIR) spectrometry. Molecular weight, polydispersity and thermal stability were obtained by gel permeation chromatography (GPC) and thermogravimetric analysis (TGA). The basic properties such as water uptake, ion exchange capacity, electrical resistance and CDI charge-discharge current were measured. The optimal values of ion exchange capacity, water uptake, electrical resistance and molecular weight of synthesized anion-exchange membrane were 1.69 meq/g, 23.7%, 1.61 ${\Omega}{\cdot}cm$ and $3.4{\times}10^4$ g/mol, respectively. As compared with conventional membrane, the pattern of cyclic charge-discharge current of synthesized anion-exchange membrane indicated efficient electrosorption and desorption.

Preparation and Characteristics of Polypropylene Nonwoven Fabric Grafted by Styrene (스티렌 그라프트 폴리프로필렌 부직포의 제조와 특성)

  • Kim, Sang-Yool;Na, Choon-Ki
    • Fashion & Textile Research Journal
    • /
    • v.6 no.3
    • /
    • pp.377-383
    • /
    • 2004
  • Photografting of styrene (St) on polypropylene (PP) nonwoven fabric using benzoin ethyl ether (BEE) as a photosensitizer was investigated. Inhibition of homopolymerization was achieved by adding various concentrations of $FeSO_4{\cdot}7H_2O$, $CuSO_4{\cdot}5H_2O$ and Mohr's salt. As St concentration was increased, the degree of grafting was increased as to a specific value and then decreased, and the effect of BEE concentration showed the same tendency. It was also found that the degree of grafting increased with reaction time and reaction temperature. Addition of the polyfunctional monomers and $H_2SO_4$ to the grafting system accelerated the photografting. The melting temperature, molecular weight, tensile strength and elongation were decreased with the increase in the degree of grafting.

Syntheses and Properties of the Newly Designed Acrylonitrile-Chloroprene-Styrene(ACS) Copolymers for the Improvement of Flame Resistance (난연성 Acrylonitrile-Chloroprene-Styrene(ACS) 신소재의 합성과 물성)

  • Ahn, Il-Seon;Ha, Chang-Sik;Lee, Jin-Kook;Cho, Won-Jei
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.130-137
    • /
    • 1992
  • The Graft copolymerization of acrylonitrile(AN) and styrene(ST) onto chloroprene rubber(CR) were carried out with benzoyl peroxide(BPO) as an initiator. The synthesized graft copolymer(ACS) was separated from polymeric mixture by the extraction with ethyl acetate and n-hexane, acetone and methanol, dimethylformamide(DMF) and methanol mixed solvent systems. The graft copolymer obtained, acrylonitrile-chloroprene-styrene(ACS) was identified by IR spectrophotometer. The effect of mole ratio of styrene to acrylonitrile, reaction time and temperature, initiator concentration, CR content and solvents on graft copolymerization were examined. It was observed that the grafting efficiency increased with [ST]/[AN] mole ratio and reaction time. The grafting efficiency increased with increasing initiator concentration and CR content. The maximum grafting efficiency was obtained when the mole ratio of [ST]/[AN] was 1.5 and reaction was made at 40hrs, and $70^{\circ}C$ using chloroform/toluene mixed solvent. The thermal properties, light resistance and flammability of ACS were compared with those of ABS and AES. It was found that flame retardancy of related polymers increased in the order ACS>ABS>AES. The thermal stability of ACS was greatly improved when compared with ABS or AES. Morphology of ACS was also investigated by using a transmisson electron microscope(TEM).

  • PDF

The Kinetics of Radical Copolymerization of Styrene with Alkyl Methacrylate in a CSTR (연속반응기에서 스티렌과 메타크릴산 알킬의 라디칼 공중합 반응속도론)

  • Kim, Nam Seok;Seul, Soo Duk;Cheong, Young Eon;Park, Keun Ho;Choi, Jong jueng
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.796-803
    • /
    • 1999
  • Solution copolymerization of styrene(St.) with methyl methacrylate(MMA), ethyl methacrylate(EMA) and n-butyl methacrylate(BMA) was carried out with benzoylperoxide(BPO) as an initiator in toluene at $80^{\circ}C$ in a continuous stirred tank reactor. Reaction volume and residence time were 0.6 liters and 3hours, respectively. The monomer reactivity ratios, $r_1(St.)$ and $r_2(RMA)$ determined by both the Kelen-Tudos method and the Fineman-Ross method were $r_1(St.)=0.60(0.61),\;r_2(MMA)=0.59(0.60);\;r_1(St.)=0.65(0.62),\;r_2(EMA)=0.55(0.52);\;r_1(St.)=0.75(0.67),\;r_2(BMA)=0.63(0.56)$. The cross-termination factor $\Phi$ of the copolymer over the entire St. compositions ranged from 0.26 to 0.96. The $\Phi$ factors of St.-RMA copolymer were increased with increasing St. content. The simulated conversions and copolymerization rates were compared with the experimental results. The average time to reach dynamic steady-state was three times and half of the residence time.

  • PDF

A Study on the Process in MMA/IPMI/Styrene Terpolymerization (MMA/IPMI/Styrene 삼원공중합 공정연구)

  • Park Jong-Kyoung;Yoon Sung-Cheol;Jin Jung-Il;Lee Chang-Jin
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.326-331
    • /
    • 2006
  • MMA(methyl methacrylate)/IPMI(N-isopropyl maleimide) copolymers are one of the well known heat resistant materials for POF(plastic optical fiber). However, because of the large difference in the reactivity ratio between MMA and IPMI$(r_1/r_2=1.72:0.17)$, the compositional drift occurs during the polymerization process which causes the deterioration of the physical properties of these copolymers. In this paper, we report that the compositional drift of the copolymer could be reduced by the addition of styrene (St) which increased the reactivity of IPMI in the MMA/IPMI copolymerization system and conversion was also increased by 1.5 or 2 times. The MMA/IPMI/St terpolymer had higher refractive index than the MMA/IPMI copolymer which depended on the contents of sytrene.

Plasma Treatment Effect of Organic/Organic Core-Shell Acrylic Adhesive Binder (II) (Organic/Organic Core-Shell 아크릴 접착바인더의 플라즈마 처리영향 (II))

  • Seul, Soo-Duk
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.89-96
    • /
    • 2010
  • Adhesive binders with core-shell structure of organic/organic pair were prepared by emulsion polymerization of acrylic monomers, such as methyl methacrylate(MMA), ethyl acrylate(EA), n-butyl acrylate(BA), and styrene(St). Ammonium persulfate (APS) was used as an water soluble initiator in the presence of an anionic surfactant, sodium dodecyl benzene sulfonate (SDBS). Non-woven fabric and leather were impregnated with the adhesive binder. The surface of the impregnated fabric and leather were treated with plasma technique and then kinetics analysis and mechanical properties were measured. The conversions of the polymerization of core-shell binder (MMA/EA, MMA/BA) were greater than 90%. When the core-shell binder was prepared at equimolar conditions, the increasing effect of the core-shell binder on the state peel strength of the impregnated and plasma-treated non-woven/non-woven fabric has the order of MMA/St, EA/BA, BA/MMA, EA/St, and EA/MMA. When the core-shell binder was prepared at non-equimolar conditions, the increasing effect of the core-shell binder on the state peel strength of the non-woven fabric/leather has the order of MMA/BA, BA/EA, MMA/EA, St/MMA, and EA/St.

Preparation and Physical Properties of Poly(Styrene/Acrylate) Core-Shell Latex Particles (Poly(Styrene/Acrylate) Core-Shell 라텍스 입자의 제조와 물성에 관한 연구)

  • Lee, Kyoung-Goo;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.27-32
    • /
    • 2003
  • The core-shell latex particles were prepared by sequential emulsion polymerization of alkyl methacrylate and styrene(ST) by using an water-soluble initiator(APS) after preparing monomer pre-emulsion in the presence of an anionic surfactant(SDBS). In organic/organic core-shell polymerization, the pre-emulsion method, which minimized required quantity of sulfactant, has been used to increase the conversion rate and the stability of core-shell latex particles as well as to reduce the formation of secondary particle that cause problems of soap-free emulsion during shell polymerization. We used several methods to observe the core-shell structure. The core-shell structure was studied by measuring pH change during hydrolysis by NaOH, glass transition temperature($T_g$) by differential scanning calorimeter(DSC), morphology of latex by transmission electron microscope(TEM) and change of particle size and distribution by a particle analyzer.