• Title/Summary/Keyword: stud shear connector

Search Result 82, Processing Time 0.021 seconds

An Experimental Study on the Behavior of the Perforated Rib Connector with Shearing Bars (전단구속철근을 배치한 유공강판 전단연결재에 관한 실험적 연구)

  • Kim, Sung-Chil;Kim, Young-Ho;Yu, Sung-Kun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.175-182
    • /
    • 2006
  • In the design of composite structures, shear connectors such as headed stud, channel, perforated plate, etc, are commonly used to transfer longitudinal shear forces across the steel-concrete interface. Many researches have been conducted to improve the characteristics of different types of shear connector. This paper presents the results of 11 push-out tests performed on the new perforated rib connectors with shearing bars embedded in concrete slab under static loads. The results obtained from these tests are as following : 1) The bearing plate welded on both sides of perforated rib plate improves the stiffness and strength. 2) The capacity of perforated connectors is influenced primarily by the transverse reinforcements and shearing bars.

Analysis on Shear Force of Specimens Using Perfobond Rib Shear Connector (Perfobond Rib 전단연결재를 사용한 실험체의 전단강도 분석)

  • Choi, Jin Woong;Park, Byung Gun;Kim, Hyeong Jun;Jeong, Ho Seong;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.138-147
    • /
    • 2011
  • The objective of this study which it sees direct shear stress and comparative analysis of flexural shear stress leads and it is a shear stress analysis which it follows in load direction of the structure which uses Perfobond Rib shear connectors. To analyze direct shear stress, five Perfobond Rib shear connect experiments were fabricated with five variables and conducted Push-out Tests. After experiments, mechanism of Perfobond Rib shear connector was examined and direct shear formula was proposed based on primary factors which influence direct shear stress. Also, for the analysis of flexural shear steel-concrete composite slab specimens were fabricated and static flexural test. Based on the static flexural test it analyzed the flexural behavior and the flexural shear stress it calculated. Direct shear stress and EN 1994-1-1 to lead and be calculated, it compared the flexural shear stress and it analyzed in about the shear resistance stress which it follows in load direction.

Finite element analysis of shear connection in composite beams exposed to fire (전단연결재의 내화성능에 대한 유한요소해석)

  • Lim, Ohk Kun;Choi, Sengkwan
    • Journal of Advanced Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.279-285
    • /
    • 2018
  • A shear connection between the steel beam and concrete slab determines the stability of composite beams. An extensive numerical study to evaluate the resistance of the shear connection in a solid slab at high temperature was conducted. Three-dimensional thermo-mechanical finite element models were developed using a dynamic explicit method and concrete damaged plasticity model. Temperature-dependent plasticity parameters of the concrete model were proposed, and the accuracy of the developed model was obtained against experimental data. This investigation has revealed that a stud shearing failure occurs regardless of temperatures, and its shearing location changes in accordance with a rise in temperature. A new strength reduction formula has been presented to estimate the resistance of the shear connection at high temperatures.

Residual bearing capacity of steel-concrete composite beams under fatigue loading

  • Wang, Bing;Liu, Xiaoling;Zhuge, Ping
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.559-569
    • /
    • 2021
  • This study was conducted to investigate the residual bearing capacity of steel-concrete composite beams under high-cycle fatigue loading through experiments and theoretical analysis. Six test beams with stud connectors were designed and fabricated for static, complete fatigue, and partial fatigue tests. The failure modes and the degradation of several mechanical performance indicators of the composite beams under high-cycle fatigue loading were analyzed. A calculation method for the residual bearing capacity of the composite beams after certain quantities of cyclic loading cycles was established by introducing nonlinear fatigue damage models for concrete, steel beam, and shear connectors beginning with the material residual strength attenuation process. The results show that the failure mode of the composite beams under the given fatigue load appears to be primarily affected by the number of cycles. As the number of fatigue loadings increases, the failure mode transforms from mid-span concrete crushing to stud cutting. The bearing capacity of a 3.0-m span composite beam after two million fatigue cycles is degraded by 30.7% due to premature failure of the stud. The calculated values of the residual bearing capacity method of the composite beam established in this paper agree well with the test values, which indicates that the model is feasibly applicable.

Behavior Characteristics of Shear Connector for Composite Behavior of Steel Composite Columns (강합성 부재의 합성거동을 위한 전단 연결재의 거동 특성)

  • Won, Deok Hee;Han, Taek Hee;Kim, Seungjun;Lee, Jung Hwa;Kang, Young Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1993-1999
    • /
    • 2013
  • Steel composite structures have been studied in various areas such as bridges, high rise buildings, and wind towers. They show excellent structural performance through overcoming of the weaknesses of steel and concrete. Although various methods were already developed to achieve full composite behavior between steel and concrete in flexural members, the number of studies regarding composite columns is quite limited. If slip occurs between concrete and steel under external loads, the performance of the composite column would be reduced significantly. Connection methods ensuring full composite action between steel and concrete must be suggested. This paper investigated about structural behavior of shear studs through a series of experimental tests. Extensive parameters were also performed to understand the effects of the diameter of stud, space of stud and height of concrete. The present study provides fundamental bases for further development of design method of shear studs in composite columns.

An Experimental Study for Joints in Hybrid PSC-Steel Beam with Perfobond rib (Perfobond rib을 적용한 PSC-강 복합구조 연결부 거동에 대한 실험적 연구)

  • Won, Jeong-Hun;Park, Se-Jun;Yoon, Ji-Hyun;Kim, Sang-Hyo;Lee, Chan-Goo;Kim, Sung-Jae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.17-20
    • /
    • 2008
  • This study presents experimental results of Steel-PSC hybrid beams having a rear plate joint with a perfobond rib shear connector between the steel girder and the prestressed concrete girder. Three specimens of 3.9m length(3.6m span length) were tested to evaluate the flexural characteristics of the joint under the condition of the three point loading. Based on load-deflection curves and failure modes of specimens by the experimental test, it is found that the proposed joint with the perfobond rib shear connector shows the higher strength and initial stiffness and the sufficient ductility. Therefore, the suggested perfobond rib shear connector can perform effectively as the joint of the Steel-PSC hybrid structural system.

  • PDF

Behavior of Stud Shear Connectors in Precast Deck using Lightweight Concrete (경량콘크리트를 사용한 프리캐스트 바닥판에서 스터드 전단연결재의 거동)

  • Cho, Sun Kyu;Lee, Jong Min;Youn, Seok Goo;Choi, Yun Wang
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.227-236
    • /
    • 2008
  • The kind of concrete generally used in steel concrete composite bridges is normal-weight concrete whose unit weight is ${2,300kg/m^{3}}$. However, using lightweight concrete in composite bridges diminishes the sectional forces due to the self-weight of concrete decks. As a result, this will make the bridge design more economical. The type of concrete deck that could be adopted in composite bridges using lightweight con crete may be classified into Cast-In-Place (C.I.P.) concrete deck and precast concrete deck. These two types of decks have some differences with respect to structural behavior and constructional method, and hence,structural behavior of stud shear connectors that connect a concrete deck to a steel girder is changed with the type of deck used. In this study, push-out tests were conducted to evaluate the characteristics of static behavior of the stud shear connectors with a precast deck using lightweight concrete. Also, additional precast deck specimens with bedding layer that had shear keys and devices for transverse confinement of the bedding layer for the prevention of cracks occurring in the bedding layer were tested. These cracks The efficiency of these devices was then evaluated.

Evaluation of Ultimate Strength of Shear Connection in Steel Embedded Composite Girders (강재매입형 합성거더 전단연결부의 극한강도 평가)

  • Sim, Chang Su;Kim, Hyeon Ho;Han, Jeong Hoon;Lee, Pil Goo
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.405-416
    • /
    • 2006
  • In composite girders with steel embedded in concrete as preflex beams, horseshoe connectors and bar connectors are commonly used to achieve composite action. Considering the requirements on the concrete cover in the thin concrete part surrounding a steel member, it has limitations with respect to the use of stud shear connectors, and significant bond and friction resistance can be generated. High horizontal shear strength between the casing concrete and the steel section is needed to introduce prestress to the concrete section in the form of preflex beams.In this paper, experiments on the evaluation of the static strength of horseshoe connectors and bar connectors were conducted and the effects of bonds were also considered. Based on the test results, current design codes were estimated and more general design guidelines that consider the design concept of Eurocode were proposed for the connectors. A strength evaluation according to failure and compared with the test results.

Economic construction management of composite beam using the head stud shear connector with encased cold-formed steel built-up fix beam via efficient computer simulation

  • Yin, Jinzhao;Tong, Huizhi;Gholizadeh, Morteza;Zandi, Yousef;Selmi, Abdellatif;Roco-Videla, Angel;Issakhov, Alibek
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.429-445
    • /
    • 2021
  • With regard to economic efficiency, composite fix beams are widely used to pass longitudinal shear forces across the interface. The current knowledge of the composite beam load-slip activity and shear capability are restricted to data from measurements of push-off. Modelling and analysis of the composite beams based on Euro-code 4 regarding to shear, bending, and deflection under differing loads were carried out using Finite Element through an efficient computer simulation and the final loading and sections capacity based on the failure modes was analysed. In bending, the section potential was increased by an improvement of the strength in both steel and concrete, but the flexural and compressive resistance growth is very weak (3.2% 3.1% and 3.0%), while the strength of the concrete has increased respectively from 25 N/mm2 to 30, 35, and 40 N/mm2 compared to the increment of steel strength by 27% and 21% when it was raised from 275 to 355 and 460 N/mm2, respectively. It was found that the final flexural load capacity of fix beams was declined with increase in the fix beam span for both three steel strength. The shear capacity of sections was remained unchanged at constant steel strength and different length, but raised with final yield strength increment of steel sections by 29%, and 67% when it was raised from 275 N/mm2 to 355 N/mm2 and 460 N/mm2, respectively.

Shear Capacity Evaluation of Steel Plate Anchors Using Folded Steel Plate in AU-composite Beam (절곡 강판을 이용한 AU합성보 덮개형 강재앵커의 전단성능 평가)

  • Lim, Hwan Taek;Choi, Byong Jeong
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.5
    • /
    • pp.389-400
    • /
    • 2017
  • Based on U-shaped composite beam, the new form of AU-composite beam were developed to create economical and efficient components reducing the cost and shortening the length of construction work. Because the U-shaped sections are open and needs to be fixed by topping concrete securely. Therefore, it is required to maintain the U-shaped sections in a structure and to work in the safe condition through construction. It also requires accessories that resist the horizontal shear force for synthesis between the top and bottom of the U-shaped section. To reinforce these shortcomings, a shear connector has been developed with various purposes of steel plate anchors. In this study, the steel plate anchors were directly tested and the shear force was evaluated by the horizontal shear force. The experiment was divided into two types, depending on the applicable deck plates. As a result of the experiment, the continuous type specimens showed greater resistance in both strength and displacement than the ones of stud anchor specimen. In discontinuous type case, due to shear simulations and simple element analysis, the less increase the ratio of width to height and the more shear strength decreased. Thus, the shear strength equation of the stud anchor was modified to suggest the new shear strength based on the testing results.