• Title/Summary/Keyword: structure-activity relationships

Search Result 260, Processing Time 0.027 seconds

Melittin-Hybrid 합성 펩타이드가 Fusarium oxysporum의 성장에 미치는 저해효과

  • Lee, Dong-Gun;Shin, Song-Yub;Lee, Sung-Gu;Lee, Myung-Kyu;Hahm, Kyung-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.5
    • /
    • pp.529-533
    • /
    • 1996
  • Melittin (ME) from honeybee venom has a broad range of strong antimicrobial activity, but it has hemolytic activity against eukaryotic cells. In order to design peptides with powerful antifungal activity without cytotoxic property of ME and understand structure-antifungal activity relationships, the hybrid peptides derived from the sequences of ME and cecropin A (CA) or magainin 2 (MA), MA(10-17)ME(1-12) and CA(1-8)ME(1-12). were synthesized by solid phase method. MA(10-17)ME(1-12) showed potent antifungal activity comparable to ME against Fusarium oxysporum with no hemolytic activity against human red blood cells. The hybrid peptides showed strong inhibi- tion of (1, 3)-$\beta$-D-glucan synthase. This result indicates that the antifungal activity of the hybrid peptides against Fusarium oxysporum is attributed to the inhibition of cell wall synthesis. The results therefore showed a successful design of a peptide having antifungal activity without hemolytic property.

  • PDF

Holographic Quantitative Structure-Activity Relationship (HQSAR) Study of 3,4-Dihydroxychalcone Derivatives as 5-Lipoxygenase Inhibitors

  • Gadhe, Changdev G.
    • Journal of Integrative Natural Science
    • /
    • v.4 no.3
    • /
    • pp.210-215
    • /
    • 2011
  • Holographic quantitative structure-activity relationships (HQSAR) is a useful tool to correlates structures with their biological activities. HQSAR is a two dimensional (2D) QSAR methodology, which generates QSAR equations through 2D fingerprint and correlates it with biological activity. Here, we report a 2D-QSAR model for a series of fifty-one 3,4-dihydroxychalcones derivatives utilizing HQSAR methodology. We developed HQSAR model with 6 optimum numbers of components (ONC), which resulted in cross-validated correlation coefficient ($q^2$) of 0.855 with 0.283 standard error of estimate (SEE). The non-cross-validated correlation coefficient (r2) with 0.966 indicates the model is predictive enough for analysis. Developed HQSAR model was binned in to a hologram length of 257. Atomic contribution map revealed the importance of dihydroxy substitution on phenyl ring.

Synthesis and Structure-Activity Relationships of Novel Compounds for the Inhibition of TNF-$\alpha$ Production

  • Park, Joon-Seok;Baik, Kyong-Up;Son, Ho-Jung;Lee, Jae-Ho;Lee, Se-Jong;Choi, Jae-Youl;Park, Ji-Soo;Yoo, Eun-Sook;Byun, Young-Seok;Park, Myung-Hwan
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.332-337
    • /
    • 2000
  • This study describes the synthesis, in vitro evaluation and molecular modeling study of novel compounds for the inhibition of TNF-$\alpha$production, Among these compounds, 2-[3-(cyclopentyloxy)-4-methoxyphenyl]-1-isoindolinone (9) was selected as a lead compound and its pyridine derivative 10 was more potent in activity and safer than rolipram.

  • PDF

3D-QSAR of Angiotensin-Converting Enzyme Inhibitors: Functional Group Interaction Energy Descriptors for Quantitative Structure-Activity Relationships Study of ACE Inhibitors

  • Kim, Sang-Uk;Chi, Myung-Whan;Yoon, Chang-No;Sung, Ha-Chin
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.459-467
    • /
    • 1998
  • A new set of functional group interaction energy descriptors relevant to the ACE (Angiotensin-Converting Enzyme) inhibitory peptide, QSAR (Quantitative Structure Activity Relationships), is presented. The functional group interaction energies approximate the charged interactions and distances between functional groups in molecules. The effective energies of the computationally derived geometries are useful parameters for deriving 3D-QSAR models, especially in the absence of experimentally known active site conformation. ACE is a regulatory zinc protease in the renin-angiotensin system. Therapeutic inhibition of this enzyme has proven to be a very effective treatment for the management of hypertension. The non bond interaction energy values among functional groups of six-feature of ACE inhibitory peptides were used as descriptor terms and analyzed for multivariate correlation with ACE inhibition activity. The functional group interaction energy descriptors used in the regression analysis were obtained by a series of inhibitor structures derived from molecular mechanics and semi-empirical calculations. The descriptors calculated using electrostatic and steric fields from the precisely defined functional group were sufficient to explain the biological activity of inhibitor. Application of the descriptors to the inhibition of ACE indicates that the derived QSAR has good predicting ability and provides insight into the mechanism of enzyme inhibition. The method, functional group interaction energy analysis, is expected to be applicable to predict enzyme inhibitory activity of the rationally designed inhibitors.

  • PDF