• Title/Summary/Keyword: structure theorem

Search Result 213, Processing Time 0.02 seconds

Model Verification of a Safe Security Authentication Protocol Applicable to RFID System (RFID 시스템에 적용시 안전한 보안인증 프로토콜의 모델검증)

  • Bae, WooSik;Jung, SukYong;Han, KunHee
    • Journal of Digital Convergence
    • /
    • v.11 no.4
    • /
    • pp.221-227
    • /
    • 2013
  • RFID is an automatic identification technology that can control a range of information via IC chips and radio communication. Also known as electronic tags, smart tags or electronic labels, RFID technology enables embedding the overall process from production to sales in an ultra-small IC chip and tracking down such information using radio frequencies. Currently, RFID-based application and development is in progress in such fields as health care, national defense, logistics and security. RFID structure consists of a reader that reads tag information, a tag that provides information and the database that manages data. Yet, the wireless section between the reader and the tag is vulnerable to security issues. To sort out the vulnerability, studies on security protocols have been conducted actively. However, due to difficulties in implementation, most suggestions are concerned with theorem proving, which is prone to vulnerability found by other investigators later on, ending up in many troubles with applicability in practice. To experimentally test the security of the protocol proposed here, the formal verification tool, CasperFDR was used. To sum up, the proposed protocol was found to be secure against diverse attacks. That is, the proposed protocol meets the safety standard against new types of attacks and ensures security when applied to real tags in the future.

Polarization Precession Effects for Shear Elastic Waves in Rotated Solids

  • Sarapuloff, Sergii A.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.842-848
    • /
    • 2013
  • Developments of Solid-State Gyroscopy during last decades are impressive and were based on thin-walled shell resonators like HRG or CRG made from fused quartz or leuko-sapphire. However, a number of design choices for inertial-grade gyroscopes, which can be used for high-g applications and for mass- or middle-scale production, is still very limited. So, considerations of fundamental physical effects in solids that can be used for development of a miniature, completely solid-state, and lower-cost sensor look urgent. There is a variety of different types of bulk acoustic (elastic) waves (BAW) in anisotropic solids. Shear waves with different variants of their polarization have to be studied especially carefully, because shear sounds in glasses and crystals are sensitive to a turn of the solid as a whole, and, so, they can be used for development of gyroscopic sensors. For an isotropic medium (for a glass or a fine polycrystalline body), classic Lame's theorem (so-called, a general solution of Elasticity Theory or Green-Lame's representation) has been modified for enough general case: an elastic medium rotated about an arbitrary set of axes. Travelling, standing, and mixed shear waves propagating in an infinite isotopic medium (or between a pair of parallel reflecting surfaces) have been considered too. An analogy with classic Foucault's pendulum has been underlined for the effect of a turn of a polarizational plane (i.e., an integration effect for an input angular rate) due to a medium's turn about the axis of the wave propagation. These cases demonstrate a whole-angle regime of gyroscopic operation. Single-crystals are anisotropic media, and, therefore, to reflect influence of the crystal's rotation, classic Christoffel-Green's tensors have been modified. Cases of acoustic axes corresponding to equal velocities for a pair of the pure-transverse (shear) waves have of an evident applied interest. For such a special direction in a crystal, different polarizations of waves are possible, and the gyroscopic effect of "polarizational precession" can be observed like for a glass. Naturally, formation of a wave pattern in a massive elastic body is much more complex due to reflections from its boundaries. Some of these complexities can be eliminated. However, a non-homogeneity has a fundamental nature for any amorphous medium due to its thermodynamically-unstable micro-structure, having fluctuations of the rapidly-frozen liquid. For single-crystalline structures, blockness (walls of dislocations) plays a similar role. Physical nature and kinematic particularities of several typical "drifts" in polarizational BAW gyros (P-BAW) have been considered briefly too. They include irregular precessions ("polarizational beats") due to: non-homogeneity of mass density and elastic moduli, dissymmetry of intrinsic losses, and an angular mismatch between propagation and acoustic axes.

  • PDF

Analysis on Students' Abilities of Proof in Middle School (중학교 학생의 증명 능력 분석)

  • 서동엽
    • Journal of Educational Research in Mathematics
    • /
    • v.9 no.1
    • /
    • pp.183-203
    • /
    • 1999
  • In this study, we analysed the constituents of proof and examined into the reasons why the students have trouble in learning the proof, and proposed directions for improving the teaming and teaching of proof. Through the reviews of the related literatures and the analyses of textbooks, the constituents of proof in the level of middle grades in our country are divided into two major categories 'Constituents related to the construction of reasoning' and 'Constituents related to the meaning of proof. 'The former includes the inference rules(simplification, conjunction, modus ponens, and hypothetical syllogism), symbolization, distinguishing between definition and property, use of the appropriate diagrams, application of the basic principles, variety and completeness in checking, reading and using the basic components of geometric figures to prove, translating symbols into literary compositions, disproof using counter example, and proof of equations. The latter includes the inferences, implication, separation of assumption and conclusion, distinguishing implication from equivalence, a theorem has no exceptions, necessity for proof of obvious propositions, and generality of proof. The results from three types of examinations; analysis of the textbooks, interview, writing test, are summarized as following. The hypothetical syllogism that builds the main structure of proofs is not taught in middle grades explicitly, so students have more difficulty in understanding other types of syllogisms than the AAA type of categorical syllogisms. Most of students do not distinguish definition from property well, so they find difficulty in symbolizing, separating assumption from conclusion, or use of the appropriate diagrams. The basic symbols and principles are taught in the first year of the middle school and students use them in proving theorems after about one year. That could be a cause that the students do not allow the exact names of the principles and can not apply correct principles. Textbooks do not describe clearly about counter example, but they contain some problems to solve only by using counter examples. Students have thought that one counter example is sufficient to disprove a false proposition, but in fact, they do not prefer to use it. Textbooks contain some problems to prove equations, A=B. Proving those equations, however, students do not perceive that writing equation A=B, the conclusion of the proof, in the first line and deforming the both sides of it are incorrect. Furthermore, students prefer it to developing A to B. Most of constituents related to the meaning of proof are mentioned very simply or never in textbooks, so many students do not know them. Especially, they accept the result of experiments or measurements as proof and prefer them to logical proof stated in textbooks.

  • PDF