• 제목/요약/키워드: structure theorem

검색결과 213건 처리시간 0.018초

RFID 시스템에 적용시 안전한 보안인증 프로토콜의 모델검증 (Model Verification of a Safe Security Authentication Protocol Applicable to RFID System)

  • 배우식;정석용;한군희
    • 디지털융복합연구
    • /
    • 제11권4호
    • /
    • pp.221-227
    • /
    • 2013
  • RFID는 IC 칩과 무선통신을 통해 다양한 개체의 정보를 관리할 수 있는 인식기술이다. 생산에서 판매에까지의 과정을 초소형 IC 칩에 내장하여 이를 무선으로 추적하는 기술로써 전자태그, 스마트태그 또는 전자라벨 등으로 불러지고 있다. 현재 의료, 국방, 물류, 보안 등에 응용하여 사용하기위해 적용 및 개발이 진행되고 있으나 구조상 태그의 정보를 읽어 들이는 리더와 정보를 제공하는 태그, 데이터를 관리하는 데이터베이스로 구성되는데 리더와 태그 구간이 무선구간으로 보안에 취약한 문제가있다. 따라서 취약한 부분을 해결하고자 보안프로토콜의 연구가 활발히 진행되고 있으나 구현부분이 어려워 정리증명 단계의 제안이 대부분이다. 이는 추후 다른 연구자에 의해 취약성이 발견되는 부분이 많아 실제시스템에 적용시 많은 어려움이 존재한다. 본 논문에서는 제안한 보안프로토콜을 CasperFDR 정형검증 도구를 사용하여 제안한 프로토콜의 보안성을 실험 검증하였으며 각종공격에 안전한 방식임이 확인되었다. 향후 실제 태그에 적용할시 보안성에 대한 안전보장 및 새로운 공격에 대한 안전성을 충족하였다.

Polarization Precession Effects for Shear Elastic Waves in Rotated Solids

  • Sarapuloff, Sergii A.
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.842-848
    • /
    • 2013
  • Developments of Solid-State Gyroscopy during last decades are impressive and were based on thin-walled shell resonators like HRG or CRG made from fused quartz or leuko-sapphire. However, a number of design choices for inertial-grade gyroscopes, which can be used for high-g applications and for mass- or middle-scale production, is still very limited. So, considerations of fundamental physical effects in solids that can be used for development of a miniature, completely solid-state, and lower-cost sensor look urgent. There is a variety of different types of bulk acoustic (elastic) waves (BAW) in anisotropic solids. Shear waves with different variants of their polarization have to be studied especially carefully, because shear sounds in glasses and crystals are sensitive to a turn of the solid as a whole, and, so, they can be used for development of gyroscopic sensors. For an isotropic medium (for a glass or a fine polycrystalline body), classic Lame's theorem (so-called, a general solution of Elasticity Theory or Green-Lame's representation) has been modified for enough general case: an elastic medium rotated about an arbitrary set of axes. Travelling, standing, and mixed shear waves propagating in an infinite isotopic medium (or between a pair of parallel reflecting surfaces) have been considered too. An analogy with classic Foucault's pendulum has been underlined for the effect of a turn of a polarizational plane (i.e., an integration effect for an input angular rate) due to a medium's turn about the axis of the wave propagation. These cases demonstrate a whole-angle regime of gyroscopic operation. Single-crystals are anisotropic media, and, therefore, to reflect influence of the crystal's rotation, classic Christoffel-Green's tensors have been modified. Cases of acoustic axes corresponding to equal velocities for a pair of the pure-transverse (shear) waves have of an evident applied interest. For such a special direction in a crystal, different polarizations of waves are possible, and the gyroscopic effect of "polarizational precession" can be observed like for a glass. Naturally, formation of a wave pattern in a massive elastic body is much more complex due to reflections from its boundaries. Some of these complexities can be eliminated. However, a non-homogeneity has a fundamental nature for any amorphous medium due to its thermodynamically-unstable micro-structure, having fluctuations of the rapidly-frozen liquid. For single-crystalline structures, blockness (walls of dislocations) plays a similar role. Physical nature and kinematic particularities of several typical "drifts" in polarizational BAW gyros (P-BAW) have been considered briefly too. They include irregular precessions ("polarizational beats") due to: non-homogeneity of mass density and elastic moduli, dissymmetry of intrinsic losses, and an angular mismatch between propagation and acoustic axes.

  • PDF

중학교 학생의 증명 능력 분석 (Analysis on Students' Abilities of Proof in Middle School)

  • 서동엽
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제9권1호
    • /
    • pp.183-203
    • /
    • 1999
  • In this study, we analysed the constituents of proof and examined into the reasons why the students have trouble in learning the proof, and proposed directions for improving the teaming and teaching of proof. Through the reviews of the related literatures and the analyses of textbooks, the constituents of proof in the level of middle grades in our country are divided into two major categories 'Constituents related to the construction of reasoning' and 'Constituents related to the meaning of proof. 'The former includes the inference rules(simplification, conjunction, modus ponens, and hypothetical syllogism), symbolization, distinguishing between definition and property, use of the appropriate diagrams, application of the basic principles, variety and completeness in checking, reading and using the basic components of geometric figures to prove, translating symbols into literary compositions, disproof using counter example, and proof of equations. The latter includes the inferences, implication, separation of assumption and conclusion, distinguishing implication from equivalence, a theorem has no exceptions, necessity for proof of obvious propositions, and generality of proof. The results from three types of examinations; analysis of the textbooks, interview, writing test, are summarized as following. The hypothetical syllogism that builds the main structure of proofs is not taught in middle grades explicitly, so students have more difficulty in understanding other types of syllogisms than the AAA type of categorical syllogisms. Most of students do not distinguish definition from property well, so they find difficulty in symbolizing, separating assumption from conclusion, or use of the appropriate diagrams. The basic symbols and principles are taught in the first year of the middle school and students use them in proving theorems after about one year. That could be a cause that the students do not allow the exact names of the principles and can not apply correct principles. Textbooks do not describe clearly about counter example, but they contain some problems to solve only by using counter examples. Students have thought that one counter example is sufficient to disprove a false proposition, but in fact, they do not prefer to use it. Textbooks contain some problems to prove equations, A=B. Proving those equations, however, students do not perceive that writing equation A=B, the conclusion of the proof, in the first line and deforming the both sides of it are incorrect. Furthermore, students prefer it to developing A to B. Most of constituents related to the meaning of proof are mentioned very simply or never in textbooks, so many students do not know them. Especially, they accept the result of experiments or measurements as proof and prefer them to logical proof stated in textbooks.

  • PDF